1800 followers problem

Calculus Level 5

k = 1 1800 ψ ( k ) \large \sum_{k=1}^{1800} \psi(k)

If the above sum can be expressed as a H b c γ d aH_b-c\gamma-d for some not necessarily distinct positive integers a , b , c a,b,c and d d , evaluate a + b + c + d a+b+c+d where b , c b,c is maximum possible.

Notations :


This problem is original.


The answer is 7200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raghav Arora
Feb 19, 2016

ψ ( z + 1 ) = γ + 0 1 1 x 2 1 x d x = H z γ k = 1 1800 ψ ( z ) = n = 1 1799 ( H n γ ) = n = 0 1799 H n 1800 γ = ( 1799 + 1 ) ( H 1799 + 1 ) 1800 γ = 1800 H 1800 1800 γ 1800 1800 + 1800 + 1800 + 1800 = 7200 \psi (z+1)\\ =-\gamma +\int _{ 0 }^{ 1 }{ \frac { { 1-x }^{ 2 } }{ 1-x } dx } \\ ={ H }_{ z }-\gamma \\ \rightarrow \sum _{ k=1 }^{ 1800 }{ \psi (z)\quad =\quad } \sum _{ n=1 }^{ 1799 }{ { (H }_{ n } } -\gamma )\\ =\sum _{ n=0 }^{ 1799 }{ { H }_{ n } } -\quad 1800\gamma \\ =(1799+1)({ H }_{ 1799+1 })\quad -1800\gamma \\ =1800{ H }_{ 1800 }-1800\gamma -1800\\ 1800+1800+1800+1800\\ =\boxed { 7200 }

It would be better if you provide proof for ψ ( z + 1 ) = H z γ \psi(z+1)=H_z-\gamma . Anyways , a nice solution +1

Nihar Mahajan - 5 years, 3 months ago

ψ ( 1 + k ) = 1 k + ψ ( k ) \psi(1+k) = \dfrac{1}{k} + \psi(k)
ψ ( 1 ) = γ \psi(1) = -\gamma
Using both these properties,
ψ ( 1 ) = γ \psi(1) = -\gamma
ψ ( 2 ) = 1 γ \psi(2) = 1 -\gamma
ψ ( 3 ) = 1 + 1 2 γ \psi(3) = 1 + \dfrac{1}{2} - \gamma
. .
. .



ψ ( 1800 ) = 1 + 1 2 + 1 1799 γ \psi(1800) = 1 + \dfrac{1}{2} + \ldots \dfrac{1}{1799} - \gamma
Adding all the terms,
k = 1 1800 ψ ( k ) = 1799 1 + 1798 2 + 1797 3 + + 1 1799 1800 γ \displaystyle \sum_{k=1}^{1800}\psi(k) = \dfrac{1799}{1} + \dfrac{1798}{2} + \dfrac{1797}{3} + \ldots + \dfrac{1}{1799} - 1800\gamma
k = 1 1800 ψ ( k ) = 1800 1 1 + 1800 2 1 + 1800 3 1 + + 1800 1799 1 1800 γ \displaystyle \sum_{k=1}^{1800}\psi(k) = \dfrac{1800}{1} - 1 + \dfrac{1800}{2} - 1 + \dfrac{1800}{3} - 1 + \ldots + \dfrac{1800}{1799} - 1 -1800\gamma
k = 1 1800 ψ ( k ) = 1800 ( 1 + 1 2 + 1 3 + + 1 1799 ) 1799 1800 γ \displaystyle \sum_{k=1}^{1800}\psi(k) = 1800\left(1 + \dfrac{1}{2} + \dfrac{1}{3} + \ldots + \dfrac{1}{1799}\right) - 1799 - 1800\gamma
k = 1 1800 ψ ( k ) = 1800 H 1799 1799 1800 γ \displaystyle \sum_{k=1}^{1800}\psi(k) = 1800H_{1799} - 1799 - 1800\gamma
I reached this stage and input my solution as 7198 and wondered why my answer was wrong, annoyed Nihar( :P ) and got him to write the max condition.
k = 1 1800 ψ ( k ) = 1800 H 1799 1799 1800 γ = 1800 H 1800 1800 1800 γ \displaystyle \sum_{k=1}^{1800}\psi(k) = 1800H_{1799} - 1799 - 1800\gamma = 1800H_{1800} - 1800 - 1800\gamma

In general,
k = 1 n ψ ( k ) = n H n 1 ( n 1 ) n γ = n ( H n γ 1 ) \displaystyle \sum_{k=1}^{n}\psi(k) = nH_{n-1} - (n-1) - n\gamma = n(H_{n} - \gamma - 1)

The proof of the two properties I mentioned can be found on the Brilliant Digamma wiki.

Moderator note:

Good usage of the properties of these functions.

Thank you for the solution and saving me from reports :) +1

Nihar Mahajan - 5 years, 3 months ago
Harsh Shrivastava
Feb 19, 2016

Claim : ψ ( k + 1 ) = ψ ( k ) + 1 k \psi(k+1) = \psi(k) + \dfrac{1}{k}

Proof : An easy proof can be found here.

Now using ψ ( 1 ) = γ \psi(1) = - \gamma , we get ψ ( 2 ) = γ + 1 = γ + H 1 ( ) \psi(2) = -\gamma + 1 = -\gamma + H_{1} \cdots \cdots (*)

ψ ( 3 ) = ψ ( 2 ) + 1 / 2 = γ + H 2 \psi(3) = \psi(2) + 1/2 = -\gamma + H_{2} [Using (*)]

ψ ( 4 ) = γ + H 3 \psi(4) = -\gamma + H_{3}

ψ ( 5 ) = γ + H 4 \psi(5) = -\gamma + H_{4}

Thus noticing the pattern, we get ψ ( n + 1 ) = γ + H n \psi(n+1) = -\gamma + H_{n}

Thus k = 1 1800 ψ ( k ) = 1800 γ + i = 1 1799 H i \displaystyle \sum_{k=1}^{1800} \psi(k) = -1800 \gamma + \sum_{i=1}^{1799} H_{i}

Claim : i = 1 n H i = ( n + 1 ) H n + 1 ( n + 1 ) \sum_{i=1}^{n} H_{i} = (n+1)H_{n+1} - (n+1)

Proof : Induction will do the job. (Left as an exercise for the reader.)

Thus k = 1 1800 ψ ( k ) = 1800 γ + i = 1 1799 H i = 1800 γ + 1800 H 1800 1800 \displaystyle \sum_{k=1}^{1800} \psi(k) = -1800 \gamma + \sum_{i=1}^{1799} H_{i} = -1800 \gamma +1800H_{1800} -1800

Final answer = 1800 + 1800 + 1800 + 1800 = 1800 × 4 = 7200 1800+1800+1800+1800 = 1800 \times 4 = \boxed{\boxed{7200}}

Great solution! +1

Nihar Mahajan - 5 years, 3 months ago

Log in to reply

Thanks for entertaining my questions.

asad bhai - 5 years, 3 months ago

Log in to reply

No problem! :)

Nihar Mahajan - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...