1987 AIME Problem 14

Algebra Level 3

Compute ( 1 0 4 + 324 ) ( 2 2 4 + 324 ) ( 3 4 4 + 324 ) ( 4 6 4 + 324 ) ( 5 8 4 + 324 ) ( 4 4 + 324 ) ( 1 6 4 + 324 ) ( 2 8 4 + 324 ) ( 4 0 4 + 324 ) ( 5 2 4 + 324 ) \frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}


The answer is 373.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adhiraj Dutta
Jul 15, 2020

We can see that 324 = 4 3 4 324=4\cdot3^4 .

The Sophie Germain Identity states that a 4 + 4 b 4 a^4 + 4b^4 can be factorized as ( a 2 + 2 b 2 2 a b ) ( a 2 + 2 b 2 + 2 a b ) (a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab) . Each of the terms is in the form of x 4 + 324 x^4 + 324 .

Using Sophie-Germain, we get that x 4 + 4 3 4 = ( x 2 + 2 3 2 2 3 x ) ( x 2 + 2 3 2 + 2 3 x ) = ( x ( x 6 ) + 18 ) ( x ( x + 6 ) + 18 ) x^4 + 4\cdot 3^4 = (x^2 + 2 \cdot 3^2 - 2\cdot 3\cdot x)(x^2 + 2 \cdot 3^2 + 2\cdot 3\cdot x) = (x(x-6) + 18)(x(x+6)+18)

Rewriting = [ ( 10 ( 10 6 ) + 18 ) ( 10 ( 10 + 6 ) + 18 ) ] [ ( 22 ( 22 6 ) + 18 ) ( 22 ( 22 + 6 ) + 18 ) ] [ ( 58 ( 58 6 ) + 18 ) ( 58 ( 58 + 6 ) + 18 ) ] [ ( 4 ( 4 6 ) + 18 ) ( 4 ( 4 + 6 ) + 18 ) ] [ ( 16 ( 16 6 ) + 18 ) ( 16 ( 16 + 6 ) + 18 ) ] [ ( 52 ( 52 6 ) + 18 ) ( 52 ( 52 + 6 ) + 18 ) ] = ( 10 ( 4 ) + 18 ) ( 10 ( 16 ) + 18 ) ( 22 ( 16 ) + 18 ) ( 22 ( 28 ) + 18 ) ( 58 ( 52 ) + 18 ) ( 58 ( 64 ) + 18 ) ( 4 ( 2 ) + 18 ) ( 4 ( 10 ) + 18 ) ( 16 ( 10 ) + 18 ) ( 16 ( 22 ) + 18 ) ( 52 ( 46 ) + 18 ) ( 52 ( 58 ) + 18 ) \begin{aligned} &= \frac{[(10(10-6)+18)(10(10+6)+18)][(22(22-6)+18)(22(22+6)+18)]\cdots[(58(58-6)+18)(58(58+6)+18)]}{[(4(4-6)+18)(4(4+6)+18)][(16(16-6)+18)(16(16+6)+18)]\cdots[(52(52-6)+18)(52(52+6)+18)]} \\ &= \frac{(10(4)+18)(10(16)+18)(22(16)+18)(22(28)+18)\cdots(58(52)+18)(58(64)+18)}{(4(-2)+18)(4(10)+18)(16(10)+18)(16(22)+18)\cdots(52(46)+18)(52(58)+18)} \end{aligned}

Almost all of the terms cancel out. We are left with 58 ( 64 ) + 18 4 ( 2 ) + 18 = 3730 10 = 373 \dfrac{58(64)+18}{4(-2)+18} = \dfrac{3730}{10} = \boxed{373}

Very good solution! All but Confused upvotes! @Adhiraj Dutta

Yajat Shamji - 11 months ago

Log in to reply

Haha thanks @Yajat Shamji

Adhiraj Dutta - 11 months ago
Chew-Seong Cheong
Jul 15, 2020

Similar solution with @Adhiraj Dutta's

The given expression can be written as:

P = k = 0 4 ( 12 k + 10 ) 4 + 324 ( 12 k + 4 ) 4 + 324 = k = 0 4 ( 12 k + 10 ) 4 + 4 3 4 ( 12 k + 4 ) 4 + 4 3 4 By Sophie Germain identity = k = 0 4 ( ( 12 k + 10 + 3 ) 2 + 3 2 ) ( ( 12 k + 10 3 ) 2 + 3 2 ) ( ( 12 k + 4 + 3 ) 2 + 3 2 ) ( ( 12 k + 4 3 ) 2 + 3 2 ) = k = 0 4 ( ( 12 k + 13 ) 2 + 3 2 ) ( ( 12 k + 7 ) 2 + 3 2 ) ( ( 12 k + 7 ) 2 + 3 2 ) ( ( 12 k + 1 ) 2 + 3 2 ) = k = 0 4 ( 12 k + 13 ) 2 + 3 2 ( 12 k + 1 ) 2 + 3 2 = k = 1 5 ( 12 k + 1 ) 2 + 3 2 k = 0 4 ( 12 k + 1 ) 2 + 3 2 = ( 12 ( 5 ) + 1 ) 2 + 3 2 ( 12 ( 0 ) + 1 ) 2 + 3 2 = 3721 + 9 1 + 9 = 373 \begin{aligned} P & = \prod_{k=0}^4 \frac {(12k+10)^4+324}{(12k+4)^4+324} \\ & = \prod_{k=0}^4 \frac {(12k+10)^4+4 \cdot 3^4}{(12k+4)^4+4\cdot 3^4} & \small \blue{\text{By Sophie Germain identity}} \\ & = \prod_{k=0}^4 \frac {\left((12k+10+3)^2+3^2\right)\left((12k+10-3)^2+3^2\right)} {\left((12k+4+3)^2+3^2\right)\left((12k+4-3)^2+3^2\right)} \\ & = \prod_{k=0}^4 \frac {\left((12k+13)^2+3^2\right)\cancel{\left((12k+7)^2+3^2\right)}} {\cancel{\left((12k+7)^2+3^2\right)}\left((12k+1)^2+3^2\right)} \\ & = \prod_{k=0}^4 \frac {(12k+13)^2+3^2} {(12k+1)^2+3^2} \\ & = \frac {\prod_\red{k=1}^\red 5 (12k+1)^2+3^2} {\prod_{k=0}^4 (12k+1)^2+3^2} \\ & = \frac {(12(5)+1)^2+3^2}{(12(0)+1)^2+3^2} = \frac {3721+9}{1+9} = \boxed{373} \end{aligned}


Reference: Sophie Germain identity

Sorry sir, but you boxed 323 323 instead of 373 373 .

Elijah L - 11 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...