1989 maps itself

What is the last digit of 198 9 1989 1989^{1989} ?

2 0 6 3 9 1 7 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Smruti Charkha
Jun 19, 2015

Note: here ^ means power. I use the logic,

consider,

9^1 = 9

9^2 = 81

9^3 = 729

9^4 = 6561

and so on.

Thus for odd power unit digit = 9 and

for even power unit digit = 1

Hence the answer is 9.

1989 1989 a ( m o d 10 ) { 1989 }^{ 1989 }\equiv a\quad (mod\quad 10) 1989 1989 = 1989 1988 9 = ( 10 199 1 ) 1988 9 ( 10 ˙ + 1 ) 9 ( m o d 10 ) ( 10 199 1 ) 9 ( m o d 10 ) { 1989 }^{ 1989 }={ 1989 }^{ 1988 }·9={ \left( 10·199-1 \right) }^{ 1988 }·9\equiv \left( \dot { 10 } +1 \right) ·9\quad (mod\quad 10)\left( 10·199-1 \right) \equiv 9\quad (mod\quad 10) , so it ends in 9

Or you can simply use some basic modular arithmetic noting that 1989 1989 is odd.

198 9 1989 = ( 1990 1 ) 1989 ( 0 1 ) 1989 ( 1 ) 1989 1 1 + 10 9 ( m o d 10 ) \begin{aligned}1989^{1989}=(1990-1)^{1989}\equiv (0-1)^{1989}&\equiv (-1)^{1989}\\&\equiv -1\\&\equiv -1+10\equiv 9\pmod{10}\end{aligned}

Prasun Biswas - 5 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...