A piece of graph paper is folded once so that (0,2) is matched with (4,0), and (7,3) is matched with (m,n). Find m+n.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t p o i n t A , B , C , D b e t h e ( 0 , 2 ) , ( 4 , 0 ) , ( 7 , 3 ) a n d ( m , n ) r e s p e c t i v e l y . S t e p 1 : T o f i n d t h e r e f l e c t i o n l i n e S i n c e t h i s i s a f o l d i n g p r o b l e m , t h e p o i n t s c a n b e t r e a t e d a s r e f l e c t i o n a l o n g t h e p e r p e n d i c u l a r b i s e c t o r o f A B . B y u s i n g t h e p o i n t A a n d B , t h e e q u a t i o n o f p e r p e n d i c u l a r b i s e c t o r o f A B i s 2 x − y − 3 = 0 S t e p 2 : T o f i n d p o i n t D S i n c e C D i s p a r a l l e l t o A B , w e h a v e − 2 1 = 7 − m 3 − n ⋯ ⋯ ( 1 ) S i n c e t h e m i d − p o i n t o f A B p a s s e s t h r o u g h t h e p e r p e n d i c u l a r b i s e c t o r o f A B , w e h a v e 2 2 ( 7 + m ) − 2 3 + n − 3 = 0 ⋯ ⋯ ( 2 ) B y s o l v i n g ( 1 ) a n d ( 2 ) , w e h a v e ( m , n ) = ( 5 3 , 5 3 1 )