1998 AHSME Problem 25

Geometry Level 2

A piece of graph paper is folded once so that (0,2) is matched with (4,0), and (7,3) is matched with (m,n). Find m+n.

6.9 8.0 6.7 6.8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Henry Wan
Oct 22, 2015

L e t p o i n t A , B , C , D b e t h e ( 0 , 2 ) , ( 4 , 0 ) , ( 7 , 3 ) a n d ( m , n ) r e s p e c t i v e l y . S t e p 1 : T o f i n d t h e r e f l e c t i o n l i n e S i n c e t h i s i s a f o l d i n g p r o b l e m , t h e p o i n t s c a n b e t r e a t e d a s r e f l e c t i o n a l o n g t h e p e r p e n d i c u l a r b i s e c t o r o f A B . B y u s i n g t h e p o i n t A a n d B , t h e e q u a t i o n o f p e r p e n d i c u l a r b i s e c t o r o f A B i s 2 x y 3 = 0 S t e p 2 : T o f i n d p o i n t D S i n c e C D i s p a r a l l e l t o A B , w e h a v e 1 2 = 3 n 7 m ( 1 ) S i n c e t h e m i d p o i n t o f A B p a s s e s t h r o u g h t h e p e r p e n d i c u l a r b i s e c t o r o f A B , w e h a v e 2 ( 7 + m ) 2 3 + n 2 3 = 0 ( 2 ) B y s o l v i n g ( 1 ) a n d ( 2 ) , w e h a v e ( m , n ) = ( 3 5 , 31 5 ) Let\quad point\quad A,\quad B,\quad C,\quad D\quad be\quad the\quad (0,2),\quad (4,0),\quad (7,3)\quad and\quad (m,n)\quad respectively.\\ \\ Step\quad 1:\quad To\quad find\quad the\quad reflection\quad line\\ Since\quad this\quad is\quad a\quad folding\quad problem,\quad the\quad points\quad can\quad be\quad treated\quad as\quad reflection\quad along\quad the\quad perpendicular\\ bisector\quad of\quad AB.\\ \\ By\quad using\quad the\quad point\quad A\quad and\quad B,\quad the\quad equation\quad of\quad perpendicular\quad bisector\quad of\quad AB\quad is\\ 2x-y-3=0\\ \\ Step\quad 2:\quad To\quad find\quad point\quad D\\ \\ Since\quad CD\quad is\quad parallel\quad to\quad AB,\quad we\quad have\\ -\frac { 1 }{ 2 } =\frac { 3-n }{ 7-m } \quad \cdots \cdots (1)\\ Since\quad the\quad mid-point\quad of\quad AB\quad passes\quad through\quad the\quad perpendicular\quad bisector\quad of\quad AB,\quad we\quad have\\ \frac { 2\left( 7+m \right) }{ 2 } -\frac { 3+n }{ 2 } -3=0\quad \cdots \cdots (2)\\ By\quad solving\quad (1)\quad and\quad (2),\quad we\quad have\quad (m,n)=(\frac { 3 }{ 5 } ,\frac { 31 }{ 5 } )\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...