1998 AHSME Problem 28

Geometry Level 3

In A B C \triangle ABC , C \angle C is a right angle and C B > C A CB > CA . Point D D is located on B C BC so that C A D \angle CAD is twice D A B \angle DAB . If A C A D = 2 3 \dfrac {AC}{AD} = \dfrac 23 , then C D B D = m n \dfrac {CD}{BD} = \dfrac mn , where m m and n n are relatively prime positive integers. Find m + n m+n .

14 10 18 26

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 15, 2019

Let D A B = θ \angle DAB = \theta . then C A D = 2 θ \angle CAD = 2\theta , Let A C = 2 AC = 2 and A D = 3 AD=3 . By Pythagorean theorem

C D 2 = A D 2 A C 2 = 3 2 2 2 = 5 C D = 5 \begin{aligned} CD^2 & = AD^2 - AC^2 = 3^2 - 2^2 = 5 \\ \implies CD & = \sqrt 5 \end{aligned}

Then we have:

tan 2 θ = C D A C = 5 2 2 tan θ 1 tan 2 θ = 5 2 5 tan 2 θ + 4 tan θ 5 = 0 ( 5 tan θ 1 ) ( tan θ + 5 ) = 0 tan θ = 1 5 Since θ < π 2 \begin{aligned} \tan 2\theta & = \frac {CD}{AC} = \frac {\sqrt 5}2 \\ \frac {2\tan \theta}{1-\tan^2 \theta} & = \frac {\sqrt 5}2 \\ \sqrt 5 \tan^2 \theta + 4\tan \theta - \sqrt 5 & = 0 \\ (\sqrt 5 \tan \theta - 1)(\tan \theta + \sqrt 5) & = 0 \\ \implies \tan \theta & = \frac 1{\sqrt 5} & \small \color{#3D99F6} \text{Since }\theta < \frac \pi 2 \end{aligned}

And that tan 3 θ = tan θ + tan 2 θ 1 tan θ tan 2 θ = 1 5 + 5 2 1 1 5 × 5 2 = 7 5 \tan 3 \theta = \dfrac {\tan \theta + \tan 2\theta}{1-\tan \theta \tan 2\theta} = \dfrac {\frac 1{\sqrt 5}+\frac{\sqrt 5}2}{1-\frac 1{\sqrt 5}\times \frac {\sqrt 5}2} = \dfrac 7{\sqrt 5} .

We note that B C = A C tan 3 θ = 2 tan 3 θ = 14 5 BC = AC \tan 3 \theta = 2 \tan 3 \theta = \dfrac {14}{\sqrt 5} . Then B D = B C C D = 14 5 5 = 9 5 BD = BC - CD = \dfrac {14}{\sqrt 5} - \sqrt 5 = \dfrac 9{\sqrt 5} and C D B D = 5 9 5 = 5 9 \dfrac {CD}{BD} = \frac {\sqrt 5}{\frac 9{\sqrt 5}} = \dfrac 59 .

Therefore, m + n = 5 + 9 = 14 m+n = 5+9 = \boxed{14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...