1998 AHSME Problem 5

Algebra Level 2

If 2 1998 2^{1998} - 2 1997 2^{1997} - 2 1996 2^{1996} + 2 1995 2^{1995} = k × 2 1995 k \times 2^{1995} , what is the value of k?

4 3 2 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

2 1998 2 1997 2 1996 + 2 1995 2^{1998} - 2^{1997} - 2^{1996} + 2^{1995}

= 2 3 + 1995 2 2 + 1995 2 1 + 1995 + 2 1995 = 2^{3+1995} - 2^{2+1995} - 2^{1 + 1995} + 2^{1995}

= 2 3 2 1995 2 2 2 1995 2 1 2 1995 + 2 1995 = 2^3*2^{1995} - 2^2*2^{1995} - 2^1*2^{1995} + 2^{1995}

= ( 8 4 2 + 1 ) 2 1995 = (8 - 4 - 2 + 1)*2^{1995}

= 3 2 1995 = 3*2^{1995}

Therefore, k = 3 k = \boxed{3}

Hello all,

as 2^(1998 )- 2^(1997) - 2^(1996) + 2^(1995) = k x 2^(1995)

factor out 2^(1995),

2^(1995)(2^3 - 2^2 -2 + 2^0) = 2^(1995)(k)

dividing both by 2^(1995),

(2^3 - 2^2 - 2 + 2^0) = k

k = 8-4-2+1 = 3,therefore , k = 3,

thanks...

V Vishnu Prasad
Mar 26, 2014

2^(n) - 2^(n-1) == 2^(n-1)

2^(n) + 2^(n-1) == 3 * 2^(n)

cool...

MOHD NAIM MOHD AMIN - 7 years, 2 months ago
Tang Changyang
Apr 20, 2014

2 1998 2 1997 2 1996 + 2 1995 = k × 2 1995 2 1995 ( 2 3 2 2 2 1 + 2 0 ) = k × 2 1995 8 4 2 + 1 = k k = 3 2^{ 1998 }-2^{ 1997 }-2^{ 1996 }+2^{ 1995 }=k\times 2^{ 1995 }\\ \\ 2^{ 1995 }(2^{ 3 }-2^{ 2 }-2^{ 1 }+2^{ 0 })=k\times 2^{ 1995 }\\ \\ 8-4-2+1=k\\ \\ k= \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...