#1_2015

Algebra Level 3

If t a n α + t a n β + t a n γ = t a n α . t a n β . t a n γ tan\alpha +tan\beta +tan\gamma =tan\alpha .tan\beta .tan\gamma and x = c o s α + i s i n α , y = c o s β + i s i n β , z = c o s γ + i s i n γ x=cos\alpha +isin\alpha \quad ,\quad y=cos\beta +isin\beta \quad ,\quad z=cos\gamma +isin\gamma , then x y z xyz equals

0 c o s β + i s i n γ cos\beta +isin\gamma 1 1 but not 1 -1 i i 1 -1 but not 1 1 + 1 +1 or 1 -1 c o s α + i s i n γ cos\alpha +isin\gamma c o s α + i s i n β cos\alpha +isin\beta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Jan 10, 2015

x y z xyz = ( c o s α + i s i n α ) ( c o s β + i s i n β ) ( c o s γ + i s i n γ ) cos\alpha +isin\alpha )(cos\beta +isin\beta )(cos\gamma +isin\gamma )

x y z = c o s ( α + β + γ ) + i s i n ( α + β + γ ) \Rightarrow xyz\quad =\quad cos(\alpha +\beta +\gamma )+isin(\alpha +\beta +\gamma )

x y z = c o s ( n π ) + i s i n ( n π ) \Rightarrow xyz\quad =\quad cos(n\pi )+isin(n\pi )

x y z = + 1 + 0 \Rightarrow xyz\quad =\quad +1\quad +\quad 0 (when n π = 0 , 2 π , 4 π . . . . ) n\pi =\quad 0,\quad 2\pi ,\quad 4\pi \quad ....)

OR

x y z = 1 + 0 xyz\quad =\quad -1\quad +\quad 0 (when n π = 1 π , 3 π , 5 π . . . . ) n\pi =\quad 1\pi,\quad 3\pi ,\quad 5\pi \quad ....)

[Note : If a + b + c = n π n\pi , then tan a + tan b + tan c = tan a . tan b .tan c ]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...