2 degree polynomial

Algebra Level 3

Let α \alpha and β \beta be the roots of x 2 5 x + 25 = 0 x^2-5x+25=0 .
Find the value of α β + β α \dfrac{\alpha}{\beta} + \dfrac{\beta}{\alpha} .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Goh Choon Aik
Apr 14, 2016

Using algebraic manipulation,

α β + β α = α 2 + β 2 α β \frac {\alpha}{\beta} + \frac {\beta}{\alpha} = \frac {\alpha^ {2} + \beta^ {2}}{\alpha \beta}

= ( α + β ) 2 2 α β α β = \frac {(\alpha +\beta)^ {2} - 2\alpha \beta}{\alpha \beta}

= ( α + β ) 2 α β 2 = \frac {(\alpha +\beta)^ {2}}{\alpha \beta} -2

Substituting α + β \alpha + \beta = 5 and α β = 25 \alpha \beta = 25 into the equation, we get 25 25 2 = 1 \frac {25}{25} - 2 = -1 .

Sagar Shah
Apr 9, 2016

Relevant wiki: Vieta's Formula Problem Solving - Basic

Firstly, This question is incorrect..It must be x^2 - 5x + 25 = 0..

You forgot to put x in 5x..

Here, (a/b) + (b/a) is equal to (a + b)^2 - 2ab/ab..

Now, By Vietta's Sum,

a + b = 5 and ab = 25.

Putting this in (a+b)^2 - 2ab/ab we get :-

= 25 - 2(25)/25

= -25/25 = -1

Hence, Answer = -1.

thanks for remind me

Justin Adrian Halim - 5 years, 2 months ago

The question has been edited accordingly.

A Former Brilliant Member - 5 years, 2 months ago

x 2 5 x + 25 = 0 { x }^{ 2 }-5x+25=0

x = b ± b 2 4 a c 2 a x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a }

x = 5 ± 25 100 2 x=\frac { 5\pm \sqrt { 25-100 } }{ 2 }

x = 5 ± 75 2 x = 5 ± i 5 3 2 x=\frac { 5\pm \sqrt { -75 } }{ 2 } \Rightarrow x=\frac { 5\pm i5\sqrt { 3 } }{ 2 }

x = 5 ( 1 ± i 3 ) 2 x=\frac { 5(1\pm i\sqrt { 3 } ) }{ 2 }

then α = 5 ( 1 + i 3 ) 2 \alpha =\frac { 5(1+i\sqrt { 3 } ) }{ 2 } and β = 5 ( 1 i 3 ) 2 \beta =\frac { 5(1-i\sqrt { 3 } ) }{ 2 }

α β = 5 ( 1 + i 3 ) 2 5 ( 1 i 3 ) 2 \frac { \alpha }{ \beta } =\frac { \frac { 5(1+i\sqrt { 3 } ) }{ 2 } }{ \frac { 5(1-i\sqrt { 3 } ) }{ 2 } }

α β = ( 1 + i 3 ) ( 1 i 3 ) \frac { \alpha }{ \beta } =\frac { (1+i\sqrt { 3 } ) }{ (1-i\sqrt { 3 } ) }

α β = ( 1 + i 3 ) ( 1 i 3 ) × ( 1 + i 3 ) ( 1 + i 3 ) \frac { \alpha }{ \beta } =\frac { (1+i\sqrt { 3 } ) }{ (1-i\sqrt { 3 } ) } \times \frac { (1+i\sqrt { 3 } ) }{ (1+i\sqrt { 3 } ) }

α β = ( 1 + i 3 ) 2 4 \frac { \alpha }{ \beta } =\frac { (1+i\sqrt { 3 } )^{ 2 } }{ 4 }

And do the same thing with β α \frac { \beta }{ \alpha } and you will get β α = ( 1 i 3 ) 2 4 \frac { \beta }{ \alpha } =\frac { (1-i\sqrt { 3 } )^{ 2 } }{ 4 }

β α + α β = ( 1 i 3 ) 2 + ( 1 + i 3 ) 2 4 \frac { \beta }{ \alpha } +\frac { \alpha }{ \beta } =\frac { (1-i\sqrt { 3 } )^{ 2 }+(1+i\sqrt { 3 } )^{ 2 } }{ 4 }

( 1 2 i 3 3 ) + ( 1 + 2 i 3 3 ) 4 4 4 \frac { (1-2i\sqrt { 3 } -3)+(1+2i\sqrt { 3 } -3) }{ 4 } \Rightarrow \frac { -4 }{ 4 }

1 \boxed{-1}

with vieta, we got a + b = 5 a+b=5 , a b = 25 ab=25 and ( a b (\frac{a}{b} + b a \frac{b}{a} = a 2 + b 2 a b \frac{a^2+b^2}{ab} ) a 2 + b 2 = ( a + b ) 2 2 a b = 5 2 2 25 = 25 50 = 25. s o , a 2 + b 2 a b a^2+b^2=(a+b)^2-2ab =5^2-2*25 =25-50 =-25. so, \frac{a^2+b^2}{ab} = 25 25 \frac{-25}{25} = 1 =-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...