2 digits?

What are the last two digits of 1 7 2016 17^{2016} ?


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We have to evaluate the given number m o d 100 mod\quad 100 . Applying Euler's Theorem as ( 17 , 100 ) = 1 (17,100)=1 and ϕ ( 100 ) = 40 \phi (100)=40 , we get that 17 40 1 ( m o d 100 ) { 17 }^{ 40 }\equiv 1(mod\quad 100) , thus, 17 2016 = ( 17 40 ) 50 17 16 1 17 16 ( m o d 100 ) { 17 }^{ 2016 }={ \left( { 17 }^{ 40 } \right) }^{ 50 }\cdot { 17 }^{ 16 }\equiv 1\cdot { 17 }^{ 16 }(mod\quad 100) . As 17 2 = 289 11 ( m o d 100 ) { 17 }^{ 2 }=289\equiv -11(mod\quad 100) , then 17 16 = ( 17 2 ) 8 ( 11 ) 8 = 11 8 ( m o d 100 ) { 17 }^{ 16 }={ ({ 17 }^{ 2 }) }^{ 8 }\equiv {( -11) }^{ 8 }={ 11 }^{ 8 }(mod\quad 100) . Note that 11 = 10 + 1 11=10+1 , thus, 1 1 8 = ( 10 + 1 ) 8 = k = 0 8 ( 8 k ) 10 8 k 1 k 11^{ 8 }={ (10+1) }^{ 8 }=\sum _{ k=0 }^{ 8 }{ \left( \begin{matrix} 8 \\ k \end{matrix} \right) { 10 }^{ 8-k }\cdot { 1 }^{ k } } , therefore, 11 8 ( 8 7 ) 10 1 1 7 + ( 8 8 ) 1 8 = 80 + 1 = 81 ( m o d 100 ) { 11 }^{ 8 }\equiv \left( \begin{matrix} 8 \\ 7 \end{matrix} \right) { 10 }^{ 1 }\cdot { 1 }^{ 7 }+\left( \begin{matrix} 8 \\ 8 \end{matrix} \right) { 1 }^{ 8 }=80+1=81(mod\quad 100) . Hence, the last two digits of the given number are 81 81 .

No you are wrong its just 9^2.

Percy 17 hax0r - 5 years ago

Log in to reply

Can you post your solution?

Mateo Matijasevick - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...