2 Dimensional Motion

If R R is the horizontal range for an inclination and h h is the maximum height reached by the projectile, then the maximum range is given by __________ \text{\_\_\_\_\_\_\_\_\_\_} .

More questions??

R 2 8 h 2 g h \frac { { R }^{ 2 } }{ 8h } -2gh R 2 8 h + 2 h \frac { { R }^{ 2 } }{ 8h } +2h None of these R 2 8 h 2 h \frac { { R }^{ 2 } }{ 8h } -2h

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Feb 11, 2016

We know range, R = u 2 sin 2 θ g = u 2 2 sin θ cos 0 g R=\frac { { u }^{ 2 }\sin { 2\theta } }{ g } =\frac { { u }^{ 2 }2\sin { \theta } \cos { 0 } }{ g }

R 2 = 4 u 2 sin 2 θ cos 2 θ g 2 = u 2 sin 2 θ 2 g × 2 × 4 u 2 cos 2 θ g \Rightarrow { R }^{ 2 }=\frac { 4{ u }^{ 2 }\sin ^{ 2 }{ \theta } \cos ^{ 2 }{ \theta } }{ { g }^{ 2 } } =\frac { { u }^{ 2 }\sin ^{ 2 }{ \theta } }{ 2g } \times 2\times \frac { 4{ u }^{ 2 }\cos ^{ 2 }{ \theta } }{ g }

R 2 = h × 8 u 2 cos 2 θ g R 2 8 h = u 2 cos 2 θ g \Rightarrow { R }^{ 2 }=h\times \frac { 8{ u }^{ 2 }\cos ^{ 2 }{ \theta } }{ g } \quad \Rightarrow \frac { { R }^{ 2 } }{ 8h } =\frac { { u }^{ 2 }\cos ^{ 2 }{ \theta } }{ g }

R 2 8 h + 2 h = u 2 cos 2 θ g + u 2 sin 2 θ g = u 2 g ( cos 2 θ + sin 2 θ ) \Rightarrow \frac { { R }^{ 2 } }{ 8h } +2h=\frac { { u }^{ 2 }\cos ^{ 2 }{ \theta } }{ g } +\frac { { u }^{ 2 }\sin ^{ 2 }{ \theta } }{ g } =\frac { { u }^{ 2 } }{ g } \left( \cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } \right)

R 2 8 h + 2 h = R m a x \Rightarrow \boxed{\frac { { R }^{ 2 } }{ 8h } +2h={ R }_{ max }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...