2 equations and 3 variables?

Algebra Level 5

x y + y z + z x = 7 y x + z y + x z = 9 \dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}= 7 \\ \dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}= \ 9

If x , y , z x,y,z are non zero real numbers such that they satisfy the equations above, find the value of: x 3 y 3 + y 3 z 3 + z 3 x 3 4 \displaystyle \dfrac{x^3}{y^3}+\dfrac{y^3}{z^3}+\dfrac{z^3}{x^3}-4


The answer is 153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

( x y + y z + z x ) 2 = x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x y ˙ y z + y z ˙ z x + z x ˙ x y ) = x 2 y 2 + y 2 z 2 + z 2 x 2 + 2 ( x z + y x + z y ) x 2 y 2 + y 2 z 2 + z 2 x 2 = ( x y + y z + z x ) 2 2 ( x z + y x + z y ) = 7 2 2 × 9 = 49 18 = 31 \begin{aligned} \left( \dfrac {x}{y} + \dfrac {y}{z} + \dfrac {z}{x} \right)^2 & = \dfrac {x^2}{y^2} + \dfrac {y^2}{z^2} + \dfrac {z^2}{x^2} + 2 \left( \dfrac {x}{y} \dot{} \dfrac {y}{z} + \dfrac {y}{z} \dot{} \dfrac {z}{x} + \dfrac {z}{x} \dot{} \dfrac {x}{y} \right) \\ & = \dfrac {x^2}{y^2} + \dfrac {y^2}{z^2} + \dfrac {z^2}{x^2} + 2 \left( \dfrac {x}{z} + \dfrac {y}{x} + \dfrac {z}{y} \right) \\ \Rightarrow \dfrac {x^2}{y^2} + \dfrac {y^2}{z^2} + \dfrac {z^2}{x^2} & = \left( \dfrac {x}{y} + \dfrac {y}{z} + \dfrac {z}{x} \right)^2 - 2 \left( \dfrac {x}{z} + \dfrac {y}{x} + \dfrac {z}{y} \right) \\ & = 7^2-2\times 9 = 49-18 = 31 \end{aligned}

Now, we have:

\(\begin{array} {} \dfrac {x^3}{y^3} + \dfrac {y^3}{z^3} + \dfrac {z^3}{x^3} -4 \\ = \left( \dfrac {x}{y} + \dfrac {y}{z} + \dfrac {z}{x} \right) \left( \dfrac {x^2}{y^2} + \dfrac {y^2}{z^2} + \dfrac {z^2}{x^2} \right) - \left( \dfrac {x}{z} + \dfrac {y}{x} + \dfrac {z}{y} \right) \left( \dfrac {x}{y} + \dfrac {y}{z} + \dfrac {z}{x} \right) \\ \quad + 3 \left( \dfrac {x}{y} \dot{} \dfrac {y}{z} \dot{} \dfrac {z}{x} \right) - 4 \\ = 7\times 31 - 9\times 7 + 3 - 4 = \boxed{153} \end{array}\)

Same approach!!

Ravi Dwivedi - 5 years, 11 months ago
Aakash Khandelwal
Jul 28, 2015

Take the three terms of first equation as a,b,c. Now use the identity:

a^3+b^3+c^3-3abc=[(a+b+c)^2-3(ab+bc+ca)]

Dipesh Shivrame
Apr 1, 2015

This question is from KVPY , isn't it ?

H e r e s a n o t h e r m e t h o d t o s o l v e i t : Here's\quad another\quad method\quad to\quad solve\quad it:

G i v e n , x y + y z + z x = 7 . . . . . . . . . . . . . . . . . . . . . ( 1 ) y x + z y + x z = 9 . . . . . . . . . . . . . . . . . . . . . ( 2 ) Given,\\\frac { x }{ y } + \frac { y }{ z } + \frac { z }{ x } = 7\quad \quad \quad .....................(1)\\ \frac { y }{ x } +\frac { z }{ y } + \frac { x }{ z } = 9\quad \quad \quad .....................(2)

W e k n o w t h a t , ( x y + y z + z x ) 3 = ( x y ) 3 + ( y z ) 3 + ( z x ) 3 + 3 ( y z x 2 ) + 3 ( x 2 y z ) + 3 ( x z y 2 ) + 3 ( y 2 x z ) + 3 ( x y z 2 ) + 3 ( z 2 x y ) + 6 . . . . . . . . . . . ( 3 ) We\quad know\quad that,\\ { \left( \frac { x }{ y } +\frac { y }{ z } +\frac { z }{ x } \right) }^{ 3 }={ \left( \frac { x }{ y } \right) }^{ 3 }+{ \left( \frac { y }{ z } \right) }^{ 3 }+{ \left( \frac { z }{ x } \right) }^{ 3 }+3{ \left( \frac { yz }{ x^{ 2 } } \right) }+{ 3\left( \frac { x^{ 2 } }{ yz } \right) }+3{ \left( \frac { xz }{ y^{ 2 } } \right) }\\ \qquad \qquad \qquad \qquad \qquad +3\left( \frac { y^{ 2 } }{ xz } \right) +3{ \left( \frac { xy }{ z^{ 2 } } \right) }+3\left( \frac { z^{ 2 } }{ xy } \right) +6\quad...........(3)

On\quad multiplying\quad (1)\quad and\quad (2)\quad we\quad get,\\ \left( \frac { x }{ y } +\frac { y }{ z } +\frac { z }{ x } \right) \left( \frac { y }{ x } +\frac { z }{ y } +\frac { x }{ z } \right) =3+\frac { yz }{ x^{ 2 } } +{ \frac { x^{ 2 } }{ yz } }+\frac { xz }{ y^{ 2 } } +\frac { y^{ 2 } }{ xz } +\frac { xy }{ z^{ 2 } } +\frac { z^{ 2 } }{ xy } =63\\ 60=\frac { yz }{ x^{ 2 } } +{ \frac { x^{ 2 } }{ yz } }+\frac { xz }{ y^{ 2 } } +\frac { y^{ 2 } }{ xz } +\frac { xy }{ z^{ 2 } } +\frac { z^{ 2 } }{ xy } \\ \\ On\quad replacing\quad this\quad value\quad in\quad (3),\\ (7)^{ 3 }={ \left( \frac { x }{ y } \right) }^{ 3 }+{ \left( \frac { y }{ z } \right) }^{ 3 }+{ \left( \frac { z }{ x } \right) }^{ 3 }+180+6\\ \\ { \left( \frac { x }{ y } \right) }^{ 3 }+{ \left( \frac { y }{ z } \right) }^{ 3 }+{ \left( \frac { z }{ x } \right) }^{ 3 }=157\\ \\ \therefore \quad { \left( \frac { x }{ y } \right) }^{ 3 }+{ \left( \frac { y }{ z } \right) }^{ 3 }+{ \left( \frac { z }{ x } \right) }^{ 3 }-4=\boxed{153}

Gaurav Shukla - 6 years, 1 month ago

Yes, I feel like I had practiced it before from a question paper of KVPY or any such exam.

Akshay Yadav - 5 years, 9 months ago

Log in to reply

Really, KVPY problems are so easy?

Swapnil Das - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...