2 Expressions make a Number

Assume f ( x ) = 2 x 2 + 2 x 4 f(x)=2x^2+2x-4 and g ( x ) = x 2 x + 2 g(x)=x^2-x+2 . Find the sum of all the values of 'x' that makes f ( x ) g ( x ) \frac { f(x) }{ g(x) } a natural number


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Lee
Oct 7, 2014

I f f ( x ) g ( x ) i s a n a t u r a l n u m b e r , g ( x ) = 1 a n d x i s a n a t u r a l n u m b e r O R f ( x ) = k g ( x ) w h e r e k = n a t u r a l n u m b e r c o n s t a n t a n d x i s a r e a l n u m b e r If\quad \frac { f(x) }{ g(x) } is\quad a\quad natural\quad number,\quad g(x)=1\quad and\quad x\quad is\quad a\quad natural\quad number\quad OR\quad f(x)=kg(x)\quad where\quad k=natural\quad number\quad constant\quad and\quad x\quad is\quad a\quad real\quad number First case: g ( x ) = 1 x 2 x + 2 = 1 x 2 x + 1 = 0 I t h a s n o s o l u t i o n . g(x)=1\rightarrow x^{ 2 }-x+2=1\rightarrow x^{ 2 }-x+1=0\rightarrow It\quad has\quad no\quad solution. Second case: f ( x ) = k g ( x ) 2 x 2 + 2 x 4 = k ( x 2 x + 2 ) ( k 2 ) x 2 ( k + 2 ) x + ( 2 k + 4 ) = 0. I n o r d e r f o r t h e l a s t e q u a t i o n t o h a v e a r e a l s o l u t i o n , D 0 D = ( k + 2 ) 2 4 ( k 2 ) ( 2 k + 4 ) = 7 k 2 + 4 k + 36 ( k 2 ) ( 7 k + 18 ) 0 18 7 k 2. S i n c e k i s a n a t u r a l n u m b e r , k = 1 o r 2 I f k = 1 , f ( x ) = g ( x ) 2 x 2 + 2 x 4 = x 2 x + 2 x 2 + 3 x 6 = 0 I f k = 2 , f ( x ) = 2 g ( x ) 2 x 2 + 2 x 4 = 2 ( x 2 x + 2 ) x = 2 T h e s u m o f a l l t h e x v a l u e s i s 3 + 2 = 1 f(x)=kg(x)\rightarrow 2{ x }^{ 2 }+2x-4=k({ x }^{ 2 }-x+2)\rightarrow (k-2){ x }^{ 2 }-(k+2)x+(2k+4)=0.\\ In\quad order\quad for\quad the\quad last\quad equation\quad to\quad have\quad a\quad real\quad solution,\quad D\ge 0\\ D={ (k+2) }^{ 2 }-4(k-2)(2k+4)=-7{ k }^{ 2 }+4k+36\ge \rightarrow (k-2)(7k+18)\le 0\\ \therefore -\frac { 18 }{ 7 } \le k\le 2.\quad Since\quad k\quad is\quad a\quad natural\quad number,\quad k=1\quad or\quad 2\\ \\ If\quad k=1,\quad f(x)=g(x)\rightarrow 2{ x }^{ 2 }+2x-4={ x }^{ 2 }-x+2\rightarrow { x }^{ 2 }+3x-6=0\\ If\quad k=2,\quad f(x)=2g(x)\rightarrow 2{ x }^{ 2 }+2x-4=2({ x }^{ 2 }-x+2)\rightarrow x=2\\ \\ \therefore The\quad sum\quad of\quad all\quad the\quad x\quad values\quad is\quad -3+2=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...