2 Zigmas Apart

Calculus Level 5

n = 0 ( 2 n 1 ) ! ! ( 2 n ) ! ! = 1 + 1 2 + 1 3 2 4 + 1 3 5 2 4 6 + \displaystyle \sum_{n=0}^{\infty} \dfrac{(2n-1)!!}{(2n)!!} = 1 + \dfrac{1}{2}+ \dfrac{1\cdot 3}{2\cdot 4} + \dfrac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6} + \cdots

n = 0 x n = 2 + n = 0 ( 2 n 1 ) ! ! ( 2 n ) ! ! x n \displaystyle \sum_{n=0}^{\infty} x^n = 2 + \displaystyle \sum_{n=0}^{\infty} \dfrac{(2n-1)!!}{(2n)!!}x^n

Find the positive value of x x satisfying the equation above.

Notation: ! ! !! denotes the double factorial notation. For example, 10 ! ! = 10 × 8 × 6 × 4 × 2 10!!=10\times8\times6\times4\times2 .


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

By expanding arcsin x \arcsin x into Taylor Series , we will obtain:

arcsin x = x + 1 2 ( x 3 3 ) + 1 3 2 4 ( x 5 5 ) + 1 3 5 2 4 6 ( x 7 7 ) + \arcsin x = x + \dfrac{1}{2}(\dfrac{x^3}{3}) + \dfrac{1\cdot 3}{2\cdot 4}(\dfrac{x^5}{5}) + \dfrac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}(\dfrac{x^7}{7}) + \cdots

Taking derivative of both sides, we will get:

d arcsin x d x = 1 1 x 2 = 1 + 1 2 ( x 2 ) + 1 3 2 4 ( x 4 ) + 1 3 5 2 4 6 ( x 6 ) + = n = 0 ( 2 n 1 ) ! ! ( 2 n ) ! ! x 2 n \dfrac{\mathrm{d}\arcsin x}{\mathrm{d}x} = \dfrac{1}{\sqrt{1-x^2}} = 1 + \dfrac{1}{2}(x^2) + \dfrac{1\cdot 3}{2\cdot 4}(x^4) + \dfrac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}(x^6) + \cdots = \displaystyle \sum_{n=0}^{\infty} \dfrac{(2n-1)!!}{(2n)!!}x^{2n}

If we substitute y = x 2 y= x^2 , we will get:

1 1 y = n = 0 ( 2 n 1 ) ! ! ( 2 n ) ! ! y n \dfrac{1}{\sqrt{1-y}} = \displaystyle \sum_{n=0}^{\infty} \dfrac{(2n-1)!!}{(2n)!!}y^n

And from the geometric series summation, we have a generating function of:

n = 0 y n = 1 1 y \displaystyle \sum_{n=0}^{\infty} y^n = \dfrac{1}{1-y}

If we let S = 1 1 y S = \dfrac{1}{\sqrt{1-y}} , we can come up with a quadratic equation of:

S 2 = 2 + S S^2 = 2 + S

S 2 S 2 = ( S + 1 ) ( S 2 ) = 0 S^2 - S - 2 = (S+1)(S-2) = 0 .

Thus, S = 2 S = 2 and S 2 = 4 S^2 = 4 .

Then solving for S 2 = 4 = 1 1 y S^2 = 4 = \dfrac{1}{1-y} , we will get y = 3 4 = 0.75 y=\dfrac{3}{4} = 0.75 .

Thus, 0.75 \boxed{0.75} is the solution.

Nice solution.

Hana Wehbi - 4 years, 3 months ago

Log in to reply

Thanks. ;)

Worranat Pakornrat - 4 years, 3 months ago
Mark Hennings
Feb 26, 2017

Using the Generalised Binomial Theorem. we have ( 1 x ) 1 2 = n = 0 ( 2 n 1 ) ! ! ( 2 n ) ! ! x n x < 1 (1 - x)^{-\frac12} \; = \; \sum_{n=0}^\infty \frac{(2n-1)!!}{(2n)!!} x^n \hspace{2cm} |x| < 1 so we need to find 0 < x < 1 0 < x < 1 such that ( 1 x ) 1 = 2 + ( 1 x ) 1 2 (1 - x)^{-1} \; = \; 2 + (1-x)^{-\frac12} which leads to x = 3 4 x=\boxed{\tfrac34} .

Since it is putting x = 1 x=1 , the first line is a divergent series, and so is not really relevant to what follows.

Aditya Dhawan
Feb 25, 2017

Another way to derive the generating function

L e t a n = ( 2 n 1 ) ! ! ( 2 n ) ! ! a n + 1 = 2 n + 1 2 n + 2 a n ( 2 n + 2 ) a n + 1 x n = ( 2 n + 1 ) a n x n n = 0 ( 2 n + 2 ) a n + 1 x n = n = 0 ( 2 n + 1 ) a n x n D e f i n e y = f ( x ) = n = 0 a n x n 2 y = 2 x y + y 0 y d y y = 0 x d x 2 ( 1 x ) y = 1 1 x Let\quad { a }_{ n }\quad =\quad \frac { (2n-1)!! }{ (2n)!! } \Rightarrow \quad { a }_{ n+1 }=\frac { 2n+1 }{ 2n+2 } { a }_{ n }\\ \therefore \quad \quad (2n+2){ a }_{ n+1 }{ x }^{ n }=(2n+1){ a }_{ n }{ x }^{ n }\Rightarrow \quad \quad \sum _{ n=0 }^{ \infty }{ (2n+2){ a }_{ n+1 }{ x }^{ n } } =\quad \sum _{ n=0 }^{ \infty }{ (2n+1){ a }_{ n }{ x }^{ n } } \\ Define\quad y=f\left( x \right) =\sum _{ n=0 }^{ \infty }{ { a }_{ n } } { x }^{ n }\\ \therefore \quad 2y'=\quad 2xy'+y\Rightarrow \quad \int _{ 0 }^{ y }{ \frac { dy }{ y } } =\quad \int _{ 0 }^{ x }{ \frac { dx }{ 2(1-x) } } \Rightarrow y=\frac { 1 }{ \sqrt { 1-x } } \\ \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...