∫ 0 ∞ sin − 1 ( e − x ) d x = α π ϕ ln ( α )
The equation above holds true for positive integers ϕ and α with α being a prime. Submit α α + ϕ ϕ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let substitute e − x = s i n z − e − x d x = c o s z d z .
The integration becomes
∫ 0 π / 2 z c o t z d z .Integrating By-Parts:
[ z l n ( s i n z ) ] 0 π / 2 − ∫ 0 π / 2 l n ( s i n z ) d z = − ∫ 0 π / 2 l n ( s i n z ) d z
Now consider I = ∫ 0 π / 2 l n ( s i n z ) d z .Using the formula
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x it becomes:
I = ∫ 0 π / 2 l n ( c o s z ) d z .Adding two integrals :
2 I = ∫ 0 π / 2 l n ( s i n z c o s z ) d z = ∫ 0 π / 2 l n ( 2 s i n 2 z ) d z = ∫ 0 π / 2 l n ( s i n 2 z ) d z − ∫ 0 π / 2 l n 2 d z
Again P = ∫ 0 π / 2 l n ( s i n 2 z ) d z .
Put 2 z = t 2 d z = d t
2 1 × ∫ 0 π l n ( s i n t ) d t = f r a c 1 2 × [ ∫ 0 π / 2 l n ( s i n t ) d t + ∫ π / 2 π l n ( s i n t ) d t ]
Put t = p + π / 2 in the second part we get P = 2 1 × 2 ∫ 0 π / 2 l n ( s i n t ) d t = ∫ 0 π / 2 l n ( s i n t ) d t
So, 2 I = I − ∫ 0 π / 2 l n 2 d z ⟹ I = ∫ 0 π / 2 l n 2 d z
So, the first integral is − I = ∫ 0 π / 2 l n 2 d z = 2 π l n 2
Nice solution.
Please put a backslash "\" in LaTex for functions such as \cot x cot x , \ln x ln x , \sin 2x sin 2 x and \cos 3x cos 3 x so that they don't appear i t a l i c as in c o t x , l n x , s i n 2 x and c o s x . Functions are not meant to be italic. Variables are italic. Also note that space is inserted automatically between the function and its operand as in \sin 2x sin 2 x , while there is no space for sin 2x s i n 2 x .
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ sin − 1 ( e − x ) d x = ∫ 0 2 π θ cot θ d θ = θ ln ( sin θ ) ∣ ∣ ∣ ∣ 0 2 π − ∫ 0 2 π ln ( sin θ ) d θ = 0 − ∫ 0 2 π ln ( 2 sin 2 θ cos 2 θ ) d θ = − 2 ∫ 0 4 π ln ( 2 sin ϕ cos ϕ ) d ϕ = − 2 ∫ 0 4 π ( ln ( 2 sin ϕ ) + ln ( 2 cos ϕ ) − ln 2 ) d ϕ = − 2 ∫ 0 4 π ( ln ( 2 sin ϕ ) d ϕ − 2 ∫ 0 4 π ln ( 2 cos ϕ ) d ϕ + 2 ∫ 0 4 π ln 2 ) d ϕ = G − G + 2 π ln 2 Let sin θ = e − x ; cos θ d θ = − e − x d x By integration by parts Let ϕ = 2 θ ; d ϕ = 2 1 d x See note. G is the Catalan’s constant.
⟹ α α + ϕ ϕ = 2 2 + 1 1 = 5
Note:
− 2 ∫ 0 4 π ln ( 2 sin ϕ ) d ϕ = 2 ∫ 0 4 π ln ( 2 cos ϕ ) d ϕ = G
where, G is the Catalan's constant .