2 subs to kill it!

Calculus Level 4

0 sin 1 ( e x ) d x = π ϕ α ln ( α ) \int_{0}^{\infty}\sin^{-1}(e^{-x})dx = \dfrac{\pi^{\phi}}{\alpha}\ln(\alpha)

The equation above holds true for positive integers ϕ \phi and α \alpha with α \alpha being a prime. Submit α α + ϕ ϕ \alpha^{\alpha}+\phi^{\phi} .


Try a bit harder version here .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 26, 2016

I = 0 sin 1 ( e x ) d x Let sin θ = e x ; cos θ d θ = e x d x = 0 π 2 θ cot θ d θ By integration by parts = θ ln ( sin θ ) 0 π 2 0 π 2 ln ( sin θ ) d θ = 0 0 π 2 ln ( 2 sin θ 2 cos θ 2 ) d θ Let ϕ = θ 2 ; d ϕ = 1 2 d x = 2 0 π 4 ln ( 2 sin ϕ cos ϕ ) d ϕ = 2 0 π 4 ( ln ( 2 sin ϕ ) + ln ( 2 cos ϕ ) ln 2 ) d ϕ = 2 0 π 4 ( ln ( 2 sin ϕ ) d ϕ 2 0 π 4 ln ( 2 cos ϕ ) d ϕ + 2 0 π 4 ln 2 ) d ϕ See note. = G G + π ln 2 2 G is the Catalan’s constant. \begin{aligned} I & = \int_0^\infty \sin^{-1} (e^{-x}) \ dx & \small \color{#3D99F6} \text{Let }\sin \theta = e^{-x}; \ \cos \theta \ d \theta = - e^{-x} \ dx \\ & = \int_0^\frac \pi 2 \theta \cot \theta \ d \theta & \small \color{#3D99F6} \text{By integration by parts} \\ & = \theta \ln (\sin \theta) \bigg|_0 ^\frac \pi 2 - \int_0^\frac \pi 2 \ln (\sin \theta) \ d \theta \\ & = 0 - \int_0^\frac \pi 2 \ln \left(2 \sin \frac \theta 2 \cos \frac \theta 2 \right) d \theta & \small \color{#3D99F6} \text{Let }\phi = \frac \theta 2; \ d \phi = \frac 12 \ dx \\ & = - 2 \int_0^\frac \pi 4 \ln \left(2 \sin \phi \cos \phi \right) d \phi \\ & = - 2 \int_0^\frac \pi 4 (\ln (2 \sin \phi) + \ln (2\cos \phi) - \ln 2) \ d \phi \\ & = {\color{#3D99F6}- 2 \int_0^\frac \pi 4 (\ln (2 \sin \phi) \ d \phi} - {\color{#3D99F6}2 \int_0^\frac \pi 4 \ln (2\cos \phi) \ d \phi} + 2 \int_0^\frac \pi 4 \ln 2) \ d \phi & \small \color{#3D99F6} \text{See note.} \\ & = {\color{#3D99F6}G} - {\color{#3D99F6}G} + \frac {\pi \ln 2}2 & \small \color{#3D99F6} G \text{ is the Catalan's constant.} \end{aligned}

α α + ϕ ϕ = 2 2 + 1 1 = 5 \implies \alpha^\alpha + \phi^\phi = 2^2 + 1^1 = \boxed{5}


Note:

2 0 π 4 ln ( 2 sin ϕ ) d ϕ = 2 0 π 4 ln ( 2 cos ϕ ) d ϕ = G \begin{aligned} - 2 \int_0^\frac \pi 4 \ln (2 \sin \phi) \ d \phi = 2 \int_0^\frac \pi 4 \ln (2\cos \phi) \ d \phi = G \end{aligned}

where, G G is the Catalan's constant .

Kushal Bose
Nov 25, 2016

Let substitute e x = s i n z e x d x = c o s z d z e^{-x}=sinz \\ -e^{-x}dx=cosz dz .

The integration becomes

0 π / 2 z c o t z d z \displaystyle \int_{0}^{\pi/2} zcotz dz .Integrating By-Parts:

[ z l n ( s i n z ) ] 0 π / 2 0 π / 2 l n ( s i n z ) d z = 0 π / 2 l n ( s i n z ) d z [zln(sinz)]_{0}^{\pi/2} - \int_{0}^{\pi/2} ln(sinz) dz \\ =-\int_{0}^{\pi/2} ln(sinz) dz

Now consider I = 0 π / 2 l n ( s i n z ) d z I=\int_{0}^{\pi/2} ln(sinz) dz .Using the formula

a b f ( x ) d x = a b f ( a + b x ) d x \int_{a}^{b} f(x) dx=\int_{a}^{b} f(a+b-x) dx it becomes:

I = 0 π / 2 l n ( c o s z ) d z I=\int_{0}^{\pi/2} ln(cosz) dz .Adding two integrals :

2 I = 0 π / 2 l n ( s i n z c o s z ) d z = 0 π / 2 l n ( s i n 2 z 2 ) d z = 0 π / 2 l n ( s i n 2 z ) d z 0 π / 2 l n 2 d z 2I=\int_{0}^{\pi/2} ln(sinzcosz) dz \\ =\int_{0}^{\pi/2} ln(\dfrac{sin2z}{2}) dz \\ =\int_{0}^{\pi/2} ln(sin2z) dz -\int_{0}^{\pi/2} ln2 dz

Again P = 0 π / 2 l n ( s i n 2 z ) d z P=\int_{0}^{\pi/2} ln(sin2z) dz .

Put 2 z = t 2 d z = d t 2z=t \\ 2 dz=dt

1 2 × 0 π l n ( s i n t ) d t = f r a c 12 × [ 0 π / 2 l n ( s i n t ) d t + π / 2 π l n ( s i n t ) d t ] \frac{1}{2} \times \int_{0}^{\pi} ln(sint) dt \\ =frac{1}{2} \times[\int_{0}^{\pi/2} ln(sint) dt + \int_{\pi/2}^{\pi} ln(sint) dt]

Put t = p + π / 2 t=p+\pi/2 in the second part we get P = 1 2 × 2 0 π / 2 l n ( s i n t ) d t = 0 π / 2 l n ( s i n t ) d t P=\frac{1}{2} \times 2 \int_{0}^{\pi/2} ln(sint) dt \\ = \int_{0}^{\pi/2} ln(sint) dt

So, 2 I = I 0 π / 2 l n 2 d z I = 0 π / 2 l n 2 d z 2I=I-\int_{0}^{\pi/2} ln2 dz \\ \implies I=\int_{0}^{\pi/2} ln2 dz

So, the first integral is I = 0 π / 2 l n 2 d z = π 2 l n 2 -I=\int_{0}^{\pi/2} ln2 dz=\dfrac{\pi}{2} ln2

Nice solution.

Please put a backslash "\" in LaTex for functions such as \cot x cot x \cot x , \ln x ln x \ln x , \sin 2x sin 2 x \sin 2x and \cos 3x cos 3 x \cos 3x so that they don't appear i t a l i c italic as in c o t x cot x , l n x ln x , s i n 2 x sin 2x and c o s x cos x . Functions are not meant to be italic. Variables are italic. Also note that space is inserted automatically between the function and its operand as in \sin 2x sin 2 x \sin 2x , while there is no space for sin 2x s i n 2 x sin2x .

Chew-Seong Cheong - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...