20-21 question

Calculus Level 4

Λ = lim n 202 0 2021 n + 202 1 2020 n n \large \Lambda = \lim_{n \to \infty} \sqrt[n]{2020^{2021n}+2021^{2020n}}

Enter the number of digits of Λ \Lambda as your answer.


The answer is 6681.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Atomsky Jahid
Aug 12, 2020

Let ξ = 202 0 2021 n + 202 1 2020 n ξ = 202 0 2021 n ( 1 + 202 1 2020 n 202 0 2021 n ) ξ = 202 0 2021 n [ 1 + ( 202 1 2020 202 0 2021 ) n ] ξ = 202 0 2021 n ( 1 + ϕ n ) \begin{aligned} \xi &= 2020^{2021n} + 2021^{2020n} \\ \implies \xi &= 2020^{2021n} \Big( 1 + \frac{2021^{2020n} }{ 2020^{2021n} } \Big) \\ \implies \xi &= 2020^{2021n} \Big[ 1 + \Big( \frac{2021^{2020} }{ 2020^{2021} } \Big)^n \Big] \\ \implies \xi &= 2020^{2021n} (1 + \phi^n) \end{aligned}

where ϕ = 202 1 2020 202 0 2021 < 1 \phi = \frac{2021^{2020} }{ 2020^{2021} } < 1

So, Λ = lim n ξ 1 n = lim n [ 202 0 2021 n ( 1 + ϕ n ) ] 1 n = 202 0 2021 [ lim n ( 1 + ϕ n ) 1 n ] = 202 0 2021 [ lim n ( 1 + ϕ n ) ] 1 n = 202 0 2021 ( 1 + lim n ϕ n ) 1 n = 202 0 2021 ( 1 + 0 ) 1 n Λ = 202 0 2021 \begin{aligned} \Lambda = \lim_{n \to \infty} \xi^{\frac{1}{n}} &= \lim_{n \to \infty} [2020^{2021n} (1 + \phi^n)]^{\frac{1}{n}} \\ &= 2020^{2021} [ \lim_{n \to \infty} (1 + \phi^n)^{\frac{1}{n}} ] \\ &= 2020^{2021} [ \lim_{n \to \infty} (1 + \phi^n) ]^{\frac{1}{n}} \\ &= 2020^{2021} ( 1 + \lim_{n \to \infty} \phi^n )^{\frac{1}{n}} \\ &= 2020^{2021} ( 1 + 0 )^{\frac{1}{n}} \\ \therefore \Lambda &= 2020^{2021} \end{aligned}

If a decimal number has the form 1 0 k 10^k , it has k + 1 \lfloor k \rfloor + 1 digits. Λ = 202 0 2021 = 1 0 2021 log 2020 1 0 6680.115 \Lambda = 2020^{2021} = 10^{ 2021 \log 2020 } \approx 10^{6680.115}

Therefore, Λ \Lambda has 6681 \boxed{6681} digits.

N.B. Why ϕ < 1 \phi < 1 202 0 2021 ? 202 1 2020 2020 202 0 2020 ? 202 1 2020 2020 ? ( 2021 2020 ) 2020 2020 ? ( 1 + 1 2020 ) 2020 \begin{aligned} 2020^{2021} \> &? \> 2021^{2020} \\ 2020 \cdot 2020^{2020} \> &? \> 2021^{2020} \\ 2020 \> &? \> \Big(\frac{2021}{2020}\Big)^{2020} \\ 2020 \> &? \> \Big(1+ \frac{1}{2020}\Big)^{2020} \end{aligned}

Now, e = lim x ( 1 + 1 x ) x > ( 1 + 1 2020 ) 2020 e = \lim_{x \to \infty} \Big(1+\frac{1}{x}\Big)^x > \Big(1+ \frac{1}{2020}\Big)^{2020}

So, 2020 > e > ( 1 + 1 2020 ) 2020 2020 > e > \Big(1+ \frac{1}{2020}\Big)^{2020} 202 0 2021 > 202 1 2020 \implies 2020^{2021} > 2021^{2020}

Chew-Seong Cheong
Aug 12, 2020

Λ = lim n 202 0 2021 n + 202 1 2020 n n = lim n exp ( 1 n ln ( 202 0 2021 n + 202 1 2020 n ) ) = exp ( lim n ln ( 202 0 2021 n + 202 1 2020 n ) n ) = exp ( lim n ln ( 202 0 2021 n ( 1 + 202 0 2021 n 202 1 2020 n ) ) n ) = exp ( lim n ln ( 202 0 2021 n ) + ln ( 1 + 202 0 2021 n 202 1 2020 n ) n ) = exp ( lim n ln ( 202 0 2021 n ) n + lim n ln ( 1 + 1 202 0 n ( 1 + 1 2020 ) 2020 n ) n ) = exp ( lim n 2021 n ln 2020 n + lim n ln ( 1 + ( ( 1 + 1 / 2020 ) 2020 2020 ) n ) n ) = exp ( 2021 ln 2020 + ln ( 1 + 0 ) ) = 202 0 2021 \begin{aligned} \Lambda & = \lim_{n \to \infty} \sqrt[n]{2020^{2021n} + 2021^{2020n}} \\ & = \lim_{n \to \infty} \exp \left(\frac 1n \ln \left(2020^{2021n} + 2021^{2020n} \right) \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2020^{2021n} + 2021^{2020n} \right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2020^{2021n} \left(1 + 2020^{-2021n}2021^{2020n} \right)\right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2020^{2021n} \right) + \ln \left(1 + 2020^{-2021n}2021^{2020n} \right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {\ln \left(2020^{2021n} \right)}n + \lim_{n \to \infty} \frac {\ln \left(1+ \frac 1{2020^n} \cdot \left(1 + \frac 1{2020}\right)^{2020n} \right)}n \right) \\ & = \exp \left(\lim_{n \to \infty} \frac {2021n \ln 2020}n + \lim_{n \to \infty} \frac {\ln \left(1+ \left(\frac {(1+1/2020)^{2020}}{2020} \right)^n \right)}n \right) \\ & = \exp \left(2021 \ln 2020 + \frac {\ln (1+0)}\infty \right) \\ & = 2020^{2021} \end{aligned}

Number of digits of Λ \Lambda is given by log 10 Λ + 1 = 2021 log 10 2020 + 1 = 6680 + 1 = 6681 \left \lfloor \log_{10} \Lambda \right \rfloor + 1 = \left \lfloor 2021 \log_{10} 2020 \right \rfloor + 1 = 6680 + 1 = \boxed{6681} .

Nice solution sir.

Log in to reply

Glad that you like it. Upvote my solution if you have not.

Chew-Seong Cheong - 10 months ago

Log in to reply

I have upvoted it earlier.:-)

Saúl Huerta
Aug 15, 2020

We can rewrite the inside part of the root:

202 0 2021 n + 202 1 2020 n = 202 0 ( 2020 + 1 ) n + ( 2020 + 1 ) 2020 n 2020^{2021n}+2021^{2020n}=2020^{(2020+1)n}+(2020+1)^{2020n}

For simplicity and easier reading, let a = 2020 a=2020 . By the binomial theorem:

( a + 1 ) a n = i = 0 a n ( a n i ) a a n i (a+1)^{an}=\sum_{i=0}^{an} {an\choose i} a^{an-i} a ( a + 1 ) n + ( a + 1 ) a n = a ( a + 1 ) n + i = 0 a n ( a n i ) a a n i \implies a^{(a+1)n}+(a+1)^{an}=a^{(a+1)n}+\sum_{i=0}^{an}{an\choose i}a^{an-i} = a ( a + 1 ) n [ 1 + i = 0 a n ( a n i ) a ( n + i ) ] =a^{(a+1)n}\left[1+\sum_{i=0}^{an}{an\choose i}a^{-(n+i)}\right]

We plug this into the root:

Λ = lim n a ( a + 1 ) n ( 1 + i = 0 a n ( a n i ) a ( n + i ) ) n \Lambda=\lim_{n\rightarrow\infty}\sqrt[n]{a^{(a+1)n}\left(1+\sum_{i=0}^{an}{an\choose i}a^{-(n+i)}\right)} = lim n a ( a + 1 ) 1 + i = 0 a n ( a n i ) a ( n + i ) n =\lim_{n\rightarrow\infty}a^{(a+1)}\sqrt[n]{1+\sum_{i=0}^{an}{an\choose i}a^{-(n+i)}}

We take the log (base 10):

log Λ = log ( lim n a ( a + 1 ) 1 + i = 0 a n ( a n i ) a ( n + i ) n ) \log\Lambda=\log\left(\lim_{n\rightarrow\infty}a^{(a+1)}\sqrt[n]{1+\sum_{i=0}^{an}{an\choose i}a^{-(n+i)}}\right) = lim n log ( a ( a + 1 ) 1 + i = 0 a n ( a n i ) a ( n + i ) n ) =\lim_{n\rightarrow\infty}\log\left(a^{(a+1)}\sqrt[n]{1+\sum_{i=0}^{an}{an\choose i}a^{-(n+i)}}\right) = ( a + 1 ) log a + lim n 1 n log ( 1 + i = 0 a n ( a n i ) a ( n + i ) ) =(a+1)\log{a}+\lim_{n\rightarrow\infty}\frac{1}{n}\log\left({1+\sum_{i=0}^{an}{an\choose i}a^{-(n+i)}}\right) = ( a + 1 ) log a + lim n 1 n log ( 1 + 1 a n i = 0 a n ( a n i ) a i ) =(a+1)\log{a}+\lim_{n\rightarrow\infty}\frac{1}{n}\log\left({1+\frac{1}{a^n}\sum_{i=0}^{an}{an\choose i}a^{-i}}\right) = ( a + 1 ) log a + lim n 1 n log ( 1 + 1 a n ( 1 + 1 a ) a n ) =(a+1)\log{a}+\lim_{n\rightarrow\infty}\frac{1}{n}\log\left({1+\frac{1}{a^n}\left(1+\frac{1}{a}\right)^{an}}\right) = ( a + 1 ) log a + lim n 1 n log ( 1 + ( ( 1 + 1 a ) a a ) n ) =(a+1)\log{a}+\lim_{n\rightarrow\infty}\frac{1}{n}\log\left({1+\left(\frac{\left(1+\frac{1}{a}\right)^a}{a}\right)^n}\right) = ( a + 1 ) log a =(a+1)\log a = 2021 log 2020 =2021\log2020 Λ = 202 0 2021 \implies\Lambda=2020^{2021}

The number of digits is given by log Λ + 1 = 6681 \lfloor\log\Lambda\rfloor+1=\boxed{6681}

Cool method.

Log in to reply

Thank you very much!

Saúl Huerta - 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...