#20 Measure your Calibre

Algebra Level 5


The answer is 112.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Mar 25, 2017

We know that x = x + { x } x = \left \lfloor x \right \rfloor + \left\{ x \right\} . For the sake of simplicity let's denote x = I \left \lfloor x \right \rfloor = I and { x } = f \left\{ x \right\} = f , now our equation becomes

P ( f ) = f 2 + ( 2 I a ) f + I 2 + b = 0 P(f) = f^2 + \left( 2I - a \right) f + I^2 + b = 0

which is quadratic in f f and whose product of roots is I 2 + b I^2 + b .

Since b b is positive and b 1 b \ge 1 , we have I 2 + b 1 I^2 + b \ge 1 .

The roots of this equation are the two values of f f and thus at least one of which should lie in the interval [ 0 , 1 ) [0,1) . Thus, if the above equation has a root in this interval, then by the condition that product of roots is greater than 1, the larger root has to be greater than 1. As the graph is concave upward and based on our previous conclusion, we get the result that P ( 1 ) < 0 P(1) < 0 to satisfy the condition of one of its roots lying in the interval [ 0 , 1 ) [0,1) .

Hence

P ( 1 ) = 1 + 2 I a + I 2 + b < 0 ( I + 1 ) 2 + b < a P(1) = 1 + 2I - a + I^2 + b < 0 \implies {(I+1)}^2 + b < a

If we want to create a bound for I I , we try putting the minimum and maximum values of a a and b b we can assume like shown below:

Set a = 9 a=9 and b = 1 b=1 , then we have

( I + 1 ) 2 < 8 4 < I < 2 {(I+1)}^2 < 8 \implies -4 < I < 2

Thus the values for I I are I { 3 , 2 , 1 , 0 , 1 } I \in \{-3,-2,-1,0,1\} . Let's check these values one by one:

  • I = 3 , 1 I = -3,1

This gives 4 + b < a 4 + b < a . Now if

a = 9 ; b = 1 , 2 , 3 , 4 a = 8 ; b = 1 , 2 , 3 a = 7 ; b = 1 , 2 a = 6 ; b = 1 a=9 ; \qquad \qquad b=1,2,3,4 \\ a=8 ; \qquad \qquad b=1,2,3 \\ a=7 ; \qquad \qquad b=1,2 \\ a=6 ; \qquad \qquad b=1

This gives a total of 4 + 3 + 2 + 1 = 10 4+3+2+1 = 10 values for each I I , contributing a total of 20 20 solutions for ( x , a , b ) (x,a,b) .

  • I = 2 , 0 I = -2,0

This gives 1 + b < a 1 + b < a . Now if

a = 9 ; b = 1 , 2 , 3 , 4 , 5 , 6 , 7 a = 8 ; b = 1 , 2 , 3 , 4 , 5 , 6 a = 7 ; b = 1 , 2 , 3 , 4 , 5 a = 6 ; b = 1 , 2 , 3 , 4 a = 5 ; b = 1 , 2 , 3 a = 4 ; b = 1 , 2 a = 3 ; b = 1 a=9 ; \qquad \qquad b=1,2,3,4,5,6,7 \\ a=8 ; \qquad \qquad b=1,2,3,4,5,6 \\ a=7 ; \qquad \qquad b=1,2,3,4,5 \\ a=6 ; \qquad \qquad b=1,2,3,4 \\ a=5 ; \qquad \qquad b=1,2,3 \\ a=4 ; \qquad \qquad b=1,2 \\ a=3 ; \qquad \qquad b=1

This gives a total of 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 7+6+5+4+3+2+1 = 28 values for each I I , contributing a total of 56 56 solutions for ( x , a , b ) (x,a,b) .

  • I = 1 I = -1

This gives b < a b < a . Now if

a = 9 ; b = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 a = 8 ; b = 1 , 2 , 3 , 4 , 5 , 6 , 7 a = 7 ; b = 1 , 2 , 3 , 4 , 5 , 6 a = 6 ; b = 1 , 2 , 3 , 4 , 5 a = 5 ; b = 1 , 2 , 3 , 4 a = 4 ; b = 1 , 2 , 3 a = 3 ; b = 1 , 2 a = 2 ; b = 1 a=9 ; \qquad \qquad b=1,2,3,4,5,6,7,8 \\ a=8 ; \qquad \qquad b=1,2,3,4,5,6,7 \\ a=7 ; \qquad \qquad b=1,2,3,4,5,6 \\ a=6 ; \qquad \qquad b=1,2,3,4,5 \\ a=5 ; \qquad \qquad b=1,2,3,4 \\ a=4 ; \qquad \qquad b=1,2,3 \\ a=3 ; \qquad \qquad b=1,2 \\ a=2 ; \qquad \qquad b=1

This contributes a total of 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 8+7+6+5+4+3+2+1 = 36 solutions for ( x , a , b ) (x,a,b) .

\therefore Total number of solutions for ( x , a , b ) (x,a,b) is 20 + 56 + 36 = 112 20+56+36 = \boxed{112} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...