200 days streak special 2

Algebra Level 4

If unity is double repeated root of p x 3 + q ( x 2 + x ) + r = 0 px^3 + q(x^2 + x) + r = 0 then

None of these choices p q r > 0 pqr > 0 p r < 0 pr < 0 p q < 0 pq < 0 p q r < 0 pqr < 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Raghav Rathi
Jan 4, 2016

I t i s g i v e n t h a t p x 3 + q ( x 2 + x ) + r h a s 1 a s t w i c e r e p e a t e d r o o t . . . . . . s o , l e t t h e e x p r e s s i o n a b o v e b e f ( x ) . f ( x ) = 3 p x 2 + 2 q x + q . . . f ( 1 ) = 0 { , f ( x ) h a s 1 a s t w i c e r e p e a t e d r o o t . H e n c e 1 i s o n l y r o o t o f f ( x ) } 3 p + 3 q = 0 p = q H e n c e , p q < 0 \quad It\quad is\quad given\quad that\quad \\ \quad \quad \quad p{ x }^{ 3 }+q({ x }^{ 2 }+x)+r\quad has\quad 1\quad as\quad twice\quad repeated\quad root.\\ .....\\ so,\quad let\quad the\quad expression\quad above\quad be\quad f(x).\\ \quad \quad \quad \quad \quad f'(x)\quad =\quad 3p{ x }^{ 2 }+2qx+q.\\ ..\quad f'(1)=0\quad \star \{ \because ,\quad f(x)\quad has\quad 1\quad as\quad twice\quad repeated\quad root.\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad Hence\quad 1\quad is\quad only\quad root\quad of\quad f'(x)\} \\ \rightarrow \quad 3p+3q=0\quad \Rightarrow \quad p\quad =\quad -q\\ \quad \\ \quad Hence,\quad \boxed { pq<0 } \\ \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad

How to prove that f ( x ) f'(x) will have 1 1 as a root? @Raghav Rathi

Anik Mandal - 5 years, 3 months ago

Log in to reply

The graph of the equation will touch the x axis at 1(condition for repeated roots), hence extrema will also be at 1.

Raghav Rathi - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...