200 days streak special 4

Calculus Level 5

The least value of a a for which the equation 4 sin x + 1 1 sin x = a \dfrac{4}{\sin x} + \dfrac{1}{1 - \sin x} = a has at least one solution in ( 0 , π 2 ) \left(0,\dfrac{\pi}{2}\right) is:


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f ( x ) = 4 sin x + 1 1 sin x f(x) = \dfrac{4}{\sin x} + \dfrac{1}{1-\sin x} . We note that f ( x ) > 0 f(x) > 0 for x ( 0 , π 2 ) x \in \left( 0, \frac{\pi}{2} \right) . For f ( x ) f(x) to have at least one root, a = min ( f ( x ) ) a = \min (f(x)) , the minimum of f ( x ) f(x) .

f ( x ) = 4 cos x sin 2 x + cos x ( 1 sin x ) 2 = cos x ( 4 + 8 sin x 4 sin 2 + sin 2 x ) sin 2 x ( 1 sin x ) 2 = cos x ( 3 sin 2 x 8 sin x + 4 ) sin 2 x ( 1 sin x ) 2 = cos x ( 3 sin x 2 ) ( sin x 2 ) sin 2 x ( 1 sin x ) 2 For f ( x ) = 0 { cos x = 0 sin x = 1 f ( x ) sin x = 2 3 4 2 3 + 1 1 2 3 = 6 + 3 = 9 sin x = 1 2 4 1 2 + 1 1 1 2 = 8 + 2 = 10 a = min ( f ( x ) ) = 9 \begin{aligned} f'(x) & = -\frac{4\cos x}{\sin^2 x} + \frac{\cos x}{(1-\sin x)^2} \\ & = \frac{\cos x(-4+8\sin x - 4\sin^2 + \sin^2 x)}{\sin^2 x(1-\sin x)^2} \\ & = - \frac{\cos x(3\sin^2 x - 8 \sin x + 4)}{\sin^2 x(1-\sin x)^2} \\ & = - \frac{\cos x(3\sin x - 2)(\sin x -2)}{\sin^2 x(1-\sin x)^2} \\ \text{For } f'(x) & = 0 \\ & \Rightarrow \begin{cases} \cos x = 0 & \Rightarrow \sin x = 1 \quad \Rightarrow f(x) \to \infty \\ \sin x = \frac{2}{3} & \Rightarrow \dfrac{4}{\frac{2}{3}} + \dfrac{1}{1-\frac{2}{3}} = 6+3 = 9 \\ \sin x = \frac{1}{2} & \Rightarrow \dfrac{4}{\frac{1}{2}} + \dfrac{1}{1-\frac{1}{2}} =8 + 2 = 10 \end{cases} \\ & \\ \Rightarrow a & = \min (f(x)) =\boxed{9} \end{aligned}

For finding minima , we can also use Cauchy-Schwarz inequality.

Harsh Shrivastava - 5 years, 3 months ago

Log in to reply

But this is a Calculus problem not Algebra.

Chew-Seong Cheong - 5 years, 3 months ago
Rohit Ner
Jan 3, 2016

Let sin x = k \color{#3D99F6}{\sin x=k} . The quadratic can be simplified to a k 2 ( 3 + a ) k = 4 = 0 \color{#3D99F6}{a{k}^2-(3+a)k=4=0} . To find the minimum value of a \color{#3D99F6}{a} , let the roots of the equation be equal(why?). Hence we get the condition ( 3 + a ) 2 = 16 a \color{#3D99F6}{{(3+a)}^2=16a} , which gives a = 1 , 9 \color{#3D99F6}{a=1,9} . Since we have considered roots to be equal, the vertex of the parabola represented by the quadratic expression should lie between 0 \color{#3D99F6}{0} and π 2 \color{#3D99F6}{\frac{\pi}{2}} . Hence 0 < 3 + a 2 a < π 2 \color{#3D99F6}{0<\frac{3+a}{2a}<\frac{\pi}{2}} or a > 3 π 2 1 \color{#3D99F6}{a>\frac{3}{\frac{\pi}{2}-1}} . Hence the only value satisfying the condition is 9 \huge\color{#3D99F6}{\boxed{9}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...