200 Followers Problem - A Logarithmic Integral!

Calculus Level 5

L m = lim n 1 n m 1 e k = 1 m ln ( 1 + a k x n ) d x \large L_m = \lim_{n \to \infty} \dfrac{1}{n^m} \int_1^e \prod_{k=1}^{m} \ln \left(1+ a_k x^n \right)\ \mathrm{d} x

Define a sequence { a i } i = 1 \left \{a_i\right \}_{i=1}^\infty such that a i = e i a_i = e^i . If L 7 L_7 can be represented as A + B e A+Be for integers A A and B B , then find the value of A + B A+B .


Bonus: Generalize this problem for L m L_m , where m Z + m \in \mathbb Z^+ . What if a i = F i a_i = F_i , where F i F_i denotes the i i th Fibonacci number?


The answer is 3186.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satyajit Mohanty
Aug 10, 2015

First note that for x 1 x \geq 1 , we have:

x a k 1 / n ( 1 + a k x n ) 1 / n x ( 1 + a k ) 1 / n . . . ( 1 ) xa_k^{1/n} \leq (1+a_k x^n)^{1/n} \leq x(1+a_k)^{1/n} \quad ... (1)

Since a k 1 / n a_k^{1/n} and ( 1 + a k ) 1 / n (1+a_k)^{1/n} each converge to 1 1 as n n \to \infty , it follows from the above that ( 1 + a k x n ) 1 / n (1+a_kx^n)^{1/n} converges to x x as n n \to \infty . Thus,

lim n ln ( 1 + a k x n ) n = lim n ln ( 1 + a k x n ) 1 / n = ln ( x ) . . . ( 2 ) \lim_{n \to \infty} \dfrac{\ln(1+a_k x^n)}{n} = \lim_{n \to \infty} \ln(1+a_k x^n)^{1/n} = \ln(x) \quad ... (2)

Taking logarithms across the last inequality in (1), we obtain;

ln ( 1 + a k x n ) n ln ( x ) + ln ( 1 + a k ) n ln ( x ) + ln ( 1 + a k ) \dfrac{\ln(1+a_k x^n)}{n} \leq \ln(x) + \dfrac{\ln(1+a_k )}{n} \leq \ln(x) + \ln(1+a_k)

from which it follows that:

k = 1 m ln ( 1 + a k x n ) n k = 1 m ( ln ( x ) + ln ( 1 + a k ) ) \prod_{k=1}^m \dfrac{\ln(1+a_k x^n)}{n} \leq \prod_{k=1}^m (\ln(x) + \ln(1+a_k))

By Lebesgue's Dominated Convergence Theorem, we can bring the limits inside the integral ; then we apply (2) as follows:

L m = 1 e lim n k = 1 m ln ( 1 + a k x n ) n d x = 1 e k = 1 m lim n ln ( 1 + a k x n ) n d x = 1 e ( ln ( x ) ) m d x . . . ( 3 ) L_m = \int_1^e \lim_{n \to \infty} \prod_{k=1}^m \dfrac{\ln(1+a_k x^n)}{n} dx = \int_1^e \prod_{k=1}^m \lim_{n \to \infty} \dfrac{\ln(1+a_k x^n)}{n} dx = \int_1^e (\ln(x))^m dx \quad ...(3)

Next, we'll integrate it by parts to obtain at the recurrence relation:

L m = e m L m 1 . . . ( 4 ) \large{L_m = e - mL_{m-1}} \quad ...(4)

Finally, we'll use induction on m m to show that (with the appropriate initial condition) the solution to the recurrence in (4) is given by;

L m = ( 1 ) m + 1 m ! + e k = 1 m ( 1 ) k m ! ( m k ) ! \large{L_m = (-1)^{m+1} m! + e \sum_{k=1}^m (-1)^k \dfrac{m!}{(m-k)!}}

L m = ( 1 ) m + 1 m ! + ( 1 ) m e D m \Longrightarrow \large{L_m = (-1)^{m+1} m! + (-1)^m eD_m}

where D m D_m is the number of derangements of 1 , 2 , , m 1,2, \ldots ,m .

Substituting m = 7 m=7 , we obtain L 7 = 5040 1854 e L_7 = 5040 - 1854e .

Thus A = 5040 , B = 1854 , A + B = 3186 A=5040, B= -1854, A+B = \boxed{3186} .


Note that the answer doesn't depend on a k a_k (s), so whatever it may be, even Fibonacci sequence, the answer still remains the same!

Nice problem! Did the same except that for solving the final integral I used the differentiation under integral sign for I ( k ) = 1 e x k d x , d 7 d k 7 ( I ( k ) ) k = 0 \displaystyle I(k) = \int_{1}^{e}{x^k \ dx}, \frac{d^7}{dk^7}\left(I(k)\right){|}_{k =0}

Kartik Sharma - 5 years, 9 months ago

Log in to reply

Can you elaborate? I couldn't understand it.

Satyajit Mohanty - 5 years, 9 months ago

Log in to reply

Well, we know that I ( k ) = 1 e x k d x = e k + 1 1 k + 1 \displaystyle I(k) = \int_{1}^{e}{x^k \ dx} = \frac{{e}^{k+1} - 1}{k+1}

d 7 d k 7 ( I ( k ) ) = 1 e l o g ( x ) 7 x k d x \displaystyle \frac{d^7}{dk^7}(I(k)) = \int_{1}^{e}{{log(x)}^{7} x^k \ dx}

d 7 d k 7 ( I ( k ) ) k = 0 = 1 e l o g ( x ) 7 d x \displaystyle \frac{d^7}{dk^7}(I(k)){|}_{k=0} = \int_{1}^{e}{{log(x)}^{7} \ dx}

And our integral becomes d 7 d k 7 ( e k + 1 1 k + 1 ) k = 0 \displaystyle \frac{d^7}{dk^7}\left(\frac{{e}^{k+1} - 1}{k+1}\right){|}_{k=0}

Now, don't ask how I solved that because that's computer's job and yeah this differentiation will just result in a thing like your relation, so, your method is the preferred one.

Kartik Sharma - 5 years, 9 months ago
Chew-Seong Cheong
Oct 29, 2017

Relevant wiki: L'Hopital's Rule - Problem Solving

L m = lim n 1 n m 1 e k = 1 m ln ( 1 + a k x n ) d x = 1 e k = 1 m ( lim n ln ( 1 + a k x n ) n ) d x For x > 1 , a / case, L’H o ˆ pital’s rule applies. = 1 e k = 1 m ( lim n a k ln x x n 1 + a k x n ) d x Differentiating up and down w.r.t n = 1 e k = 1 m ( lim n a k ln x 1 x n + a k ) d x Dividing up and down by x n = 1 e k = 1 7 ln x d x Putting m = 7 = 1 e ln 7 x d x Let u = ln x e u d u = d x = 0 1 u 7 e u d u By repeated integration by parts \begin{aligned} L_m & = \lim_{n \to \infty} \frac 1{n^m} \int_1^e \prod_{k=1}^m \ln \left(1+a_kx^n\right) \ dx \\ & = \int_1^e \prod_{k=1}^m \left({\color{#3D99F6}\lim_{n \to \infty} \frac {\ln \left(1+a_kx^n \right)}n} \right) dx & \small \color{#3D99F6} \text{For }x > 1 \text{, a }\infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = \int_1^e \prod_{k=1}^m \left({\color{#3D99F6}\lim_{n \to \infty} \frac {a_k\ln x \cdot x^n}{1+a_kx^n}} \right) dx & \small \color{#3D99F6} \text{Differentiating up and down w.r.t }n \\ & = \int_1^e \prod_{k=1}^m \left({\color{#3D99F6}\lim_{n \to \infty} \frac {a_k\ln x}{\frac 1{x^n}+a_k}} \right) dx & \small \color{#3D99F6} \text{Dividing up and down by }x^n \\ & = \int_1^e \prod_{k=1}^{\color{#3D99F6}7} \ln x \ dx & \small \color{#3D99F6} \text{Putting }m=7 \\ & = \int_1^e \ln^7 x \ dx & \small \color{#3D99F6} \text{Let }u = \ln x \implies e^u \ du = dx \\ & = \int_0^1 u^7 e^u \ du & \small \color{#3D99F6} \text{By repeated integration by parts} \end{aligned}

= ( u 7 7 u 6 + 42 u 5 210 u 4 + 840 u 3 2520 u 2 + 5040 u 5040 ) e u 0 1 = 5040 1854 e \begin{aligned} \quad \ & = \left(u^7 - 7u^6+42u^5-210u^4+840u^3-2520u^2+5040u - 5040\right)e^u \bigg|_0^1 \\ & = 5040 - 1854e \end{aligned}

A + B = 5040 1854 = 3186 \implies A+B = 5040-1854 = \boxed{3186}


Generalization:

We note that L m L_m is independent of a i a_i and it is given by:

L m = ( 1 ) m + 1 m ! + e k = 0 m ( 1 ) k m ! ( m k ) ! \begin{aligned} L_m & = (-1)^{m+1} m! + e \sum_{k=0}^m (-1)^k \frac {m!}{(m-k)!} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...