m = 0 ∑ ∞ 2 m + 1 ( − 1 ) m n = 0 ∑ ∞ [ 4 n + 1 ( − 1 ) n + 4 n + 3 ( − 1 ) n ] If the value of above expression can be expressed in the form b c π a , find the value of a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Consider the Maclaurin series of ln ( 1 + z ) as follows:
ln ( 1 + z ) ln ( 1 + i ) ℑ ( ln ( 1 + i ) ) = z − 2 z 2 + 3 z 3 − 4 z 4 + 5 z 5 − ⋯ = i + 2 1 − 3 1 i − 4 1 + 5 1 i − ⋯ = 1 − 3 1 + 5 1 − 7 1 + 9 1 − ⋯ Putting z = i Taking the imaginary part
Therefore,
m = 0 ∑ ∞ 2 m + 1 ( − 1 ) m = ℑ ( ln ( 1 + i ) ) = ℑ ( ln ( 2 ( cos 4 π + i sin 4 π ) ) ) = ℑ ( ln ( 2 e 4 π i ) ) = ℑ ( 2 1 ln 2 + 4 π i ) = 4 π By Euler’s formula
Similarly,
2 1 ln ( 1 − z 1 + z ) 2 z 1 ln ( 1 − z 1 + z ) 2 i 1 ln ( 1 − i 1 + i ) = z + 3 z 3 + 5 z 5 + 7 z 7 + 9 z 9 + ⋯ = 1 + 3 z 2 + 5 z 4 + 7 z 6 + 9 z 8 + ⋯ = 1 + 3 1 i − 5 1 − 7 1 i + 9 1 + ⋯ Dividing both sides by z Putting z = i
Implying n = 0 ∑ ∞ ( 4 n + 1 ( − 1 ) n + 4 n + 3 ( − 1 ) n ) = ℜ ( 2 i 1 ln ( 1 − i 1 + i ) ) + ℑ ( 2 i 1 ln ( 1 − i 1 + i ) )
2 i 1 ln ( 1 − i 1 + i ) = 2 i 1 ln ( ( 1 − i ) ( 1 + i ) ( 1 + i ) ( 1 + i ) ) = 2 i 1 ln ( ( 1 − i ) ( 1 + i ) ( 1 + 2 i + i ) ( 1 + i ) ) = 2 i 1 ln ( i + i + i i ) = 2 i 1 ln ( e 4 π i + e 2 π i + e 4 3 π i ) = 2 i 1 ln ( 2 1 + 0 − 2 1 + i ( 2 1 + 1 + 2 1 ) ) = 2 i 1 ln ( ( 1 + 2 ) i ) = − 2 i i ln ( ( 1 + 2 ) e 2 π i ) = 2 2 ( 1 − i ) ( ln ( 1 + 2 ) + 2 π i ) = 2 2 1 ( 2 π + ln ( 1 + 2 ) + i ( 2 π − ln ( 1 + 2 ) ) ) By Euler’s formula
Therefore,
n = 0 ∑ ∞ ( 4 n + 1 ( − 1 ) n + 4 n + 3 ( − 1 ) n ) = ℜ ( 2 i 1 ln ( 1 − i 1 + i ) ) + ℑ ( 2 i 1 ln ( 1 − i 1 + i ) ) = 2 2 1 ( 2 π + ln ( 1 + 2 ) ) + 2 2 1 ( 2 π − ln ( 1 + 2 ) ) = 2 2 π
Finally, m = 0 ∑ ∞ 2 m + 1 ( − 1 ) m n = 0 ∑ ∞ ( 4 n + 1 ( − 1 ) n + 4 n + 3 ( − 1 ) n ) = 4 π ⋅ 2 2 π = 8 2 π 2 ⟹ a + b + c = 2 + 8 + 2 = 1 2 .