200 Followers Problem: Trigonometric sum from the future

Geometry Level 5

S = k = 1 2020 ( 1 sin ( 2 k 1 4040 π + θ ) sin ( 2 k 1 4040 π θ ) ) \large \text{S} = \sum_{k=1}^{2020} \left(\dfrac{1}{\sin \left(\frac{2k-1}{4040}\pi + \theta \right) \cdot \sin \left(\frac{2k-1}{4040} \pi - \theta \right)}\right)

where 0 < θ < π 2 0< \theta < \dfrac{\pi}{2}

If S \text{S} can be represented as:

A ( tan ( B θ ) sin ( C θ ) ) \large A \cdot \left( \dfrac{\tan (B \theta)}{\sin (C \theta)} \right)

where A A , B B and C C are positive integers, evaluate A + B + C A+B+C .


Original


The answer is 6062.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ishan Singh
Oct 4, 2015

Consider the general summation,

S = k = 1 n ( 1 sin ( 2 k 1 2 n π + θ ) sin ( 2 k 1 2 n π θ ) ) \displaystyle \text{S} = \sum_{k=1}^{n} \left(\dfrac{1}{\sin \left(\dfrac{2k-1}{2n}\pi + \theta \right) \cdot \sin \left(\dfrac{2k-1}{2n}\pi - \theta \right)}\right)

= k = 1 n ( 1 cos 2 θ cos 2 ( 2 k 1 2 n π ) ) = \displaystyle \sum_{k=1}^{n} \left(\dfrac{1}{\cos^2 \theta - \cos^2 \left(\dfrac{2k-1}{2n}\pi\right)}\right)

= k = 1 n 1 2 cos θ ( 1 cos θ cos ( 2 k 1 2 n π ) + 1 cos θ + cos ( 2 k 1 2 n π ) ) = \displaystyle \sum_{k=1}^{n} \dfrac{1}{2\cos \theta} \left(\dfrac{1}{\cos \theta - \cos \left(\dfrac{2k-1}{2n}\pi\right)} + \dfrac{1}{\cos \theta + \cos \left(\dfrac{2k-1}{2n}\pi\right)} \right)

= k = 1 n 1 cos θ ( 1 cos θ cos ( 2 k 1 2 n π ) ) ( k = 1 n f ( k ) = k = 1 n f ( n + 1 k ) ) = \displaystyle \sum_{k=1}^{n} \dfrac{1}{\cos \theta} \left(\dfrac{1}{\cos \theta - \cos \left(\dfrac{2k-1}{2n}\pi\right)}\right) \quad \left( \because \sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} f(n+1-k) \right)

Now,

T n ( x ) = 2 n 1 k = 1 n ( x cos ( 2 k 1 2 n π ) ) \displaystyle T_{n} (x) = 2^{n-1} \prod_{k=1}^{n} \left(x - \cos \left(\dfrac{2k-1}{2n}\pi\right) \right)

where T n ( x ) T_{n}(x) is Chebyshev Polynomial of the first kind.

Taking logarithm and differentiating w.r.t. x x , we have,

k = 1 n ( 1 x cos ( 2 k 1 2 n π ) ) = T n ( x ) T n ( x ) \displaystyle \sum_{k=1}^{n} \left(\dfrac{1}{x - \cos \left(\dfrac{2k-1}{2n}\pi\right)}\right) = \dfrac{T_{n}'(x)}{T_{n}(x)}

where T n ( x ) T_{n}'(x) denotes the derivative of T n ( x ) T_{n}(x) w.r.t. x x

k = 1 n ( 1 x cos ( 2 k 1 2 n π ) ) = n U n 1 ( x ) T n ( x ) \displaystyle \implies \sum_{k=1}^{n} \left(\dfrac{1}{x - \cos \left(\dfrac{2k-1}{2n}\pi\right)}\right) = \dfrac{nU_{n-1}(x)}{T_{n}(x)}

where U n ( x ) U_{n}(x) is Chebyshev Polynomial of the second kind.

Putting x = cos θ x = \cos \theta and noting that U n 1 ( cos θ ) = sin ( n θ ) sin θ U_{n-1}(\cos \theta) = \dfrac{\sin (n\theta)}{\sin \theta} and T n ( cos θ ) = cos ( n θ ) T_{n}(\cos \theta) = \cos (n\theta) we have,

k = 1 n ( 1 cos θ cos ( 2 k 1 2 n π ) ) = n tan ( n θ ) sin θ \displaystyle \sum_{k=1}^{n} \left(\dfrac{1}{\cos \theta - \cos \left(\dfrac{2k-1}{2n}\pi\right)}\right) = \dfrac{n \tan (n\theta)}{\sin \theta}

S = 2 n tan ( n θ ) sin ( 2 θ ) \displaystyle \implies \text{S} = \dfrac{2n \tan(n \theta)}{\sin (2\theta)}

Putting n = 2020 n = 2020 , we have,

A = 4040 , B = 2020 A = 4040, B = 2020 and C = 2 C = 2

A + B + C = 6062 \implies A+B+C = \boxed{6062}

Wow! Brilliant! Out of the top drawer, seriously!

I did it by simplifying 1 sin ( 2 k 1 2 n π + θ ) sin ( 2 k 1 2 n π θ ) = 1 sin ( 2 θ ) ( cot ( 2 k 1 2 n π θ ) cot ( 2 k 1 2 n π + θ ) ) \displaystyle \frac{1}{\sin\left(\frac{2k-1}{2n} \pi + \theta\right) \sin\left(\frac{2k-1}{2n} \pi - \theta\right)} = \frac{1}{\sin(2\theta)}\left(\cot\left(\frac{2k-1}{2n} \pi - \theta\right) - \cot\left(\frac{2k-1}{2n} \pi + \theta\right)\right)

and then "guessing the solution" by computations for some smaller n n that the sum of the "cots" is simply 2 n tan ( n θ ) 2n \tan(n \theta) .

This method is really bad, I know, but I think that the answer(which has come out to be so simple) can be found from the sum easily and it has given encouragement to me to find out how.

Kartik Sharma - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...