**
not divisible by 5
**
, are arranged in the increasing order. Find the
$2000^{th}$
number in this list.

The answer is 4315672.

**
This section requires Javascript.
**

You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.

Here is the solution of that RMO question.Copy pasted only.

The number of 7-digit numbers with 1 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once is 6! = 720. But 120 of these end in 5 and hence are divisible by 5. Thus the number of 7-digit numbers with 1 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once but not divisible by 5 is 600. Similarly the number of 7-digit numbers with 2 and 3 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once but not divisible by 5 is also 600 each. These account for 1800 numbers. Hence 2000-th number must have 4 in the left most place. Again the number of such 7-digit numbers beginning with 41,42 and not divisible by 5 is 120 − 24 = 96 each and these account for 192 numbers. This shows that 2000-th number in the list must begin with 43. The next 8 numbers in the list are: 4312567, 4312576, 4312657, 4312756, 4315267, 4315276, 4315627 and 4315672. Thus 2000-th number in the list is 4315672.