2001 Problem!

Algebra Level 4

f ( 1 2001 ) + f ( 2 2001 ) + f ( 3 2001 ) + + f ( 2000 2001 ) f \left( \frac 1{2001} \right) + f \left( \frac 2{2001} \right) + f \left( \frac 3{2001} \right) +\cdots + f \left( \frac {2000}{2001} \right)

Let f ( x ) = 2 4 x + 2 f(x) = \dfrac 2{4^x+2} for real numbers x x . Evaluate the expression above.


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abhishek Sinha
Jul 2, 2016

Just note that f ( x ) + f ( 1 x ) = 1 f(x) + f(1-x)=1 Now pair up the terms.

As suggested by @Abhishek Sinha :

f ( x ) = 2 4 x + 2 f ( 1 x ) = 2 4 1 x + 2 = 2 4 4 x + 2 = 4 x 2 + 4 x = 4 x + 2 2 4 x + 2 = 1 f ( x ) f ( x ) + f ( 1 x ) = 1 f ( 1 2001 ) + f ( 2000 2001 ) = 1 As 1 1 2001 = 2000 2001 f ( 2 2001 ) + f ( 1999 2001 ) = 1 f ( 3 2001 ) + f ( 1998 2001 ) = 1 . . . . . . \begin{aligned} f(x) & = \frac 2{4^x+2} \\ \implies f(1-x) & = \frac 2{4^{1-x}+2} \\ & = \frac 2{\frac 4{4^x}+2} \\ & = \frac {4^x}{2+4^x} \\ & = \frac {4^x+2-2}{4^x+2} \\ & = 1 - f(x) \\ \implies f(x) + f(1-x) & = 1 \\ \implies f \left(\frac 1{2001} \right) + f \left(\color{#3D99F6}{\frac {2000}{2001}} \right) & = 1 & \small \color{#3D99F6}{\text{As } 1-\frac 1{2001} = \frac{2000}{2001}} \\ f \left(\frac 2{2001} \right) + f \left(\frac {1999}{2001} \right) & = 1 \\ f \left(\frac 3{2001} \right) + f \left(\frac {1998}{2001} \right) & = 1 \\ ... & \quad \ ... \end{aligned}

f ( 1 2001 ) + f ( 2 2001 ) + f ( 3 2001 ) + . . . + f ( 2000 2001 ) = 1000 \implies f \left(\frac 1{2001} \right) + f \left(\frac 2{2001} \right) +f \left(\frac 3{2001} \right) +...+f \left(\frac {2000}{2001} \right) = \boxed{1000}

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

Nice method :) +1 :)

Novril Razenda - 4 years, 11 months ago

@Abhishek Sinha Nice +1 :D

Novril Razenda - 4 years, 11 months ago
Shree Ganesh
Jul 3, 2016

I did by summing up first and last term

It's equally such as f ( x ) + f ( 1 x ) f(x)+f(1-x) ;)

Novril Razenda - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...