If the value of can be represented by when and are coprime positive integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t S = ( 1 2 0 0 3 ) + ( 4 2 0 0 3 ) + ( 7 2 0 0 3 ) + … + ( 2 0 0 2 2 0 0 3 )
By Pascal's rule:
= [ ( 0 2 0 0 2 ) + ( 1 2 0 0 2 ) ] + [ ( 3 2 0 0 2 ) + ( 4 2 0 0 2 ) ] + …
… + [ ( 6 2 0 0 2 ) + ( 7 2 0 0 2 ) ] + … + [ ( 2 0 0 1 2 0 0 2 ) + ( 2 0 0 2 2 0 0 2 ) ]
Again, by Pascal's rule:
= [ 2 ( 0 2 0 0 1 ) + ( 1 2 0 0 1 ) ] + [ ( 2 2 0 0 1 ) + 2 ( 3 2 0 0 1 ) + ( 4 2 0 0 1 ) ] + …
… + [ ( 5 2 0 0 1 ) + 2 ( 6 2 0 0 1 ) + ( 7 2 0 0 1 ) ] + … + [ ( 2 0 0 0 2 0 0 1 ) + 2 ( 2 0 0 1 2 0 0 1 ) ]
We observe that k = 0 ∑ j ( k j ) = 2 j
Subtracting from above:
S − 2 2 0 0 1 = ( 0 2 0 0 1 ) + ( 3 2 0 0 1 ) + ( 6 2 0 0 1 ) + … + ( 2 0 0 1 2 0 0 1 )
We may repeat the above procedure:
S − 2 2 0 0 1 − 2 1 9 9 9 = ( 2 1 9 9 9 ) + ( 5 1 9 9 9 ) + ( 8 1 9 9 9 ) + … + ( 1 9 9 7 1 9 9 9 )
After many repetitions:
S − 2 2 0 0 1 − 2 1 9 9 9 − 2 1 9 9 7 − … − 2 1 = 0
S = 2 1 + 2 3 + 2 5 + … + 2 1 9 9 9 + 2 2 0 0 1
2 1 S = 2 0 + 2 2 + 2 4 + … + + 2 1 9 9 8 + 2 2 0 0 0
S + 2 1 S = 2 3 S = 2 0 + 2 1 + 2 2 + 2 3 + … + 2 2 0 0 0 + 2 2 0 0 1
2 ( 2 3 S ) = 3 S = 2 1 + 2 2 + 2 3 + 2 4 + … + 2 2 0 0 1 + 2 2 0 0 2
3 S − 2 3 S = 2 3 S = 2 2 0 0 2 − 2 0
S = 3 2 ( 2 2 0 0 2 − 1 ) = k ( 2 2 0 0 2 − 1 )
k = 3 2
2 + 3 = 5