2004 problem!

Find the remainder when 1 2003 + 2 2003 + 3 2003 + + 200 3 2003 1^{2003}+2^{2003}+3^{2003}+\cdots +2003^{2003} is divided by 2004. 2004.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

S = 1 2003 + 2 2003 + 3 2003 + . . . + 200 3 2003 = ( 1 2003 + 200 3 2003 ) + ( 2 2003 + 200 2 2003 ) + ( 3 2003 + 200 1 2003 ) + . . . + ( 100 1 2003 + 100 3 2003 ) + 100 2 2003 = n = 1 1001 ( n 2003 + ( 2004 n ) 2003 ) + 100 2 2003 = n = 1 1001 [ ( n + ( 2004 n ) ) ( n 2002 n 1001 ( 2004 n ) 1001 + ( 2004 n ) 2002 ) ] + 100 2 2003 = 2004 n = 1 1001 ( n 2002 n 1001 ( 2004 n ) 1001 + ( 2004 n ) 2002 ) + 100 2 2003 \begin{aligned} S & = 1^{2003} + 2^{2003} + 3^{2003} + ... + 2003^{2003} \\ & = (1^{2003} + 2003^{2003}) + (2^{2003} + 2002^{2003}) + (3^{2003} + 2001^{2003}) + ... + (1001^{2003} + 1003^{2003}) + 1002^{2003} \\ & = \sum_{n=1}^{1001} \left(n^{2003} + (2004-n)^{2003}\right) + 1002^{2003} \\ & = \sum_{n=1}^{1001} \left[(n + (2004-n)) \left(n^{2002} - n^{1001}(2004-n)^{1001} + (2004-n)^{2002} \right) \right] + 1002^{2003} \\ & = 2004 \sum_{n=1}^{1001} \left(n^{2002} - n^{1001}(2004-n)^{1001} + (2004-n)^{2002} \right) + 1002^{2003} \end{aligned}

S 100 2 2003 ( m o d 2004 ) ( 2 3 167 ) 2003 ( m o d 2 2 3 167 ) 1002 ( 2 2 3 2 16 7 2 ) 1001 ( m o d 2 2 3 167 ) 1002 ( 3 167 2004 ) 1001 ( m o d 2004 ) 0 ( m o d 2004 ) \begin{aligned} \implies S & \equiv 1002^{2003} \pmod{2004} \\ & \equiv (2 \cdot 3 \cdot 167)^{2003} \pmod{2^2 \cdot 3 \cdot 167} \\ & \equiv 1002(2^2 \cdot 3^2 \cdot 167^2)^{1001} \pmod{2^2 \cdot 3 \cdot 167} \\ & \equiv 1002(3 \cdot 167 \cdot 2004)^{1001} \pmod{2004} \\ & \equiv \boxed{0} \pmod{2004} \end{aligned}

Dan Swartz
Jul 9, 2016

Pair the first and last term second and second to last term and so on. Each of these pairs will be of the form n^2003 +(-n)^2003 which is congruent to zero

nice observation..+1

Ayush G Rai - 4 years, 11 months ago
Arulx Z
Aug 22, 2016

1 2003 + 2 2003 + 3 2003 + + 200 3 2003 = ( 1 2003 + 200 3 2003 ) + ( 2 2003 + 200 2 2003 ) + + ( 100 1 2003 + 100 3 2003 ) + 100 2 2003 = ( 1 2003 + ( 1 ) 2003 ) + ( 2 2003 + ( 2 ) 2003 ) + + ( 100 1 2003 + ( 1001 ) 2003 ) + 100 2 2003 = 100 2 2003 0 ( m o d 2004 ) \begin{matrix} 1^{ 2003 }+2^{ 2003 }+3^{ 2003 }+\dots +2003^{ 2003 } & = & (1^{ 2003 }+2003^{ 2003 })+(2^{ 2003 }+2002^{ 2003 })+\dots +(1001^{ 2003 }+1003^{ 2003 })+1002^{ 2003 } \\ & = & (1^{ 2003 }+(-1)^{ 2003 })+(2^{ 2003 }+(-2)^{ 2003 })+\dots +(1001^{ 2003 }+(-1001)^{ 2003 })+1002^{ 2003 } \\ & = & 1002^{ 2003 }\equiv 0\quad ({ \bmod \text{ 2004} }) \end{matrix}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...