Let a , b , c be the real solution of the system of equations
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x 3 − x y z = 2 y 3 − x y z = 6 z 3 − x y z = 2 0
The greatest possible value of a 3 + b 3 + c 3 = n m , where m and n are coprime positive integers. What is m + n ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you for the logical and elegant solution.
You’re welcome :)
Subtracting the first equation from the second:
y 3 − x 3 = 4
x = 3 y 3 − 4
Subtracting the second equation from the third:
z 3 − y 3 = 1 4
z = 3 y 3 + 1 4
Plugging this two equations into the second:
y 3 − [ 3 ( y 3 − 4 ) ( y 3 + 1 4 ) ] y = 6
y 3 − 6 = [ 3 y 6 + 1 0 y 3 − 5 6 ] y
Cubing both sides:
y 9 − 1 8 y 6 + 1 0 8 y 3 − 2 1 6 = y 3 ( y 6 + 1 0 y 3 − 5 6 )
y 9 − 1 8 y 6 + 1 0 8 y 3 − 2 1 6 = y 9 + 1 0 y 6 − 5 6 y 3
2 8 y 6 − 1 6 4 y 3 + 2 1 6 = 0
7 y 6 − 4 1 y 3 + 5 4 = 0
y 3 = 1 4 4 1 ± 4 1 2 − 4 ⋅ 7 5 4
( i ) y 3 = 7 2 7 → x 3 = − 7 1 → z 3 = − 7 1 2 5
Or:
( i i ) y 3 = 2 → x 3 = − 2 → z 3 = 1 6
( i ) leads to:
a 3 + b 3 + c 3 = 7 1 5 1
While ( i i ) leads to:
a 3 + b 3 + c 3 = 1 6
So, the maximum value is:
7 1 5 1
Then:
m = 1 5 1 , n = 7 , m + n = 1 5 8
Thank you for the logical and elegant solution.
Problem Loading...
Note Loading...
Set Loading...
x 3 − x y z y 3 − x y z z 3 − x y z Let, x y z x 3 y 3 z 3 Multiplying, ( x y z ) 3 t 3 t 3 0 0 0 0 ⟹ t Adding, x 3 + y 3 + z 3 It is clear that ⟹ t a 3 + b 3 + c 3 ⟹ m + n = 2 = 6 = 2 0 = t = ( t + 2 ) ( 1 ) = ( t + 6 ) ( 2 ) = ( t + 2 0 ) ( 3 ) ( 1 ) , ( 2 ) and ( 3 ) = ( t + 2 ) ( t + 6 ) ( t + 2 0 ) = ( t + 2 ) ( t + 6 ) ( t + 2 0 ) ( t = x y z ) = t 3 + 2 8 t 2 + 1 7 2 t + 2 4 0 = 2 8 t 2 + 1 7 2 t + 2 4 0 = 7 t 2 + 4 3 t + 6 0 = ( 7 t 2 + 2 8 t ) + ( 1 5 t + 6 0 ) = ( 7 t + 1 5 ) ( t + 4 ) = − 4 , 7 − 1 5 ( 1 ) , ( 2 ) and ( 3 ) = 2 8 + 3 t in order to maximize the value of a 3 + b 3 + c 3 we have to maximize t = 7 − 1 5 = 2 8 + 3 ⋅ ( 7 − 1 5 ) = 7 1 9 6 − 4 5 = 7 1 5 1 = 1 5 1 + 7 = 1 5 8