2014 Frenzy with Squares

Algebra Level 4

Find the last three digits of the alternating sum 201 4 2 201 3 2 + 201 2 2 201 1 2 + . . . + 2 2 1 2 2014^2-2013^2+2012^2-2011^2+...+2^2-1^2


The answer is 105.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

22 solutions

Thanic Samin
Dec 24, 2013

Applying the identity: a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b)

201 4 2 201 3 2 + 201 2 2 201 1 2 . . . 2 2 1 1 = ( 2014 + 2013 ) + ( 2012 + 2011 ) + ( 2010 + 2009 ) . . . + ( 2 + 1 ) 2014^2-2013^2+2012^2-2011^2...2^2-1^1=(2014+2013)+(2012+2011)+(2010+2009)...+(2+1)

= 2014 × 2015 2 = 2029105 = \frac{2014 \times 2015 }{2}=2029105

So the answer is 105 \boxed{105}

Sorry, the power of 1 would be 2

Thanic Samin - 7 years, 5 months ago

Log in to reply

Yes, but it still doesn't change anything as 1 n = 1 1^{n}=1 with any value of n n .

Prasun Biswas - 7 years, 5 months ago

Nice solution! Thanks!

Kou$htav Chakrabarty - 7 years, 5 months ago

Osthir Solution

Jobayer Sheikh - 7 years, 5 months ago

How do you get (2014*2015)/2 ??

rana kar - 7 years, 5 months ago

Log in to reply

2014 + 1 = 2015; 2013 + 2 = 2015... and 2014/2 = 1007. So, 2014 + 2013 + 2012 + 2011 + 2010 + 2009 + 2008 +...+ 2 + 1 = 2015 x 1007

Hùng Minh - 7 years, 5 months ago

BEST

Bilal Abbasi - 7 years, 5 months ago

right

Sk Motiur Rahaman - 7 years, 5 months ago

what is going on?

Jay Cyril Mijares - 7 years, 5 months ago
Romeo Gomez
Dec 26, 2013

The sum can be written like this form n = 1 1007 ( 2 n ) 2 n = 1 1007 ( 2 n 1 ) 2 , \sum_{n=1}^{1007}(2n)^2 - \sum_{n=1}^{1007}(2n-1)^2, squaring both sides and using properties of the sum we have n = 1 1007 4 n 2 ( 4 n 2 4 n + 1 ) = n = 1 1007 4 n 1 , \sum_{n=1}^{1007}4n^2 - (4n^2-4n+1)=\sum_{n=1}^{1007}4n-1, using properties of the sum one more time 4 n = 1 1007 n n = 1 1007 1 , 4\sum_{n=1}^{1007}n-\sum_{n=1}^{1007}1, using the formulas k = 1 n k = n ( n + 1 ) 2 k = 1 n 1 = n , \sum_{k=1}^{n}k=\frac{n(n+1)}{2}\\\sum_{k=1}^{n}1=n, so 4 ( 1007 ) ( 1008 ) 2 1007 = 4043105 , 4\frac{(1007)(1008)}{2}-1007=4043105, then the last three digits are 105 \boxed{105}

nice explanations

Maddy Siddh - 7 years, 2 months ago
Prasun Biswas
Dec 25, 2013

Here, if from the start, we evaluate consecutive two terms of the series, we get an AP as: 4027 , 4023 , . . . . 3 4027,4023,....3 .

Let us take a , l , d , n a , l , d , n as the first term, last term, common difference and no. of terms of the AP resp.

Let a n = 3 a + ( n 1 ) d = 3 4027 + ( n 1 ) ( 4 ) = 3 4 ( n 1 ) = 4024 n 1 = 1006 n = 1007 a_{n}=3 \implies a+(n-1)d=3 \implies 4027+(n-1)(-4)=3 \implies 4(n-1)=4024 \implies n-1=1006 \implies n=1007

So, there are 1007 terms in the AP as 3 is the last term.

Now, Sum = n 2 ( a + l ) = 1007 2 ( 3 + 4027 ) = 1007 2 × 4030 = ( 1007 × 2015 ) = 2029105 =\frac{n}{2} (a+l) = \frac{1007}{2} (3+4027) = \frac{1007}{2}\times 4030= (1007\times 2015) = \boxed{2029105}

Here, we have the last 3 digits of the sum as 105 \boxed{105} .

Nice solution! Thanks!

Kou$htav Chakrabarty - 7 years, 5 months ago

best solution

Anik Mandal - 7 years ago
Akshay Jain
Dec 24, 2013

taking two terms and solving ,we get an A.P. i.e. 4027 + 4023 + 4019 + .......................+3 , now , calculate no. of terms by p = a + ( n-1 )d , here , p =3 ,a=4027 , d = (-4) , solving we get n=1007 , now , sum of series = n [ 2a +(n-1) d] /2 , putting values we get sum =2029105 , so , last digits are 105

Note that 2 2 1 2 = 3 2^{2} - 1^{2} = 3 , 4 2 3 2 = 7 4^{2} - 3^{2} = 7 , 6 2 5 2 = 11 6^{2} - 5^{2} = 11

Generally: ( 2 k ) 2 ( 2 k 1 ) 2 = 3 + 4 ( k 1 ) = 4 k 1 (2k)^{2} - (2k - 1)^{2} = 3 + 4(k - 1) = 4k - 1 .

So we can evaluate the last one: 4 ( 1007 ) 1 = 4027 4(1007) - 1 = 4027 .

Now, we can sum that with the first one ( 3 3 ), and we get 4030 4030 . See that this will be repeating 503 503 times until you get to 100 8 2 100 7 2 1008^{2} - 1007^{2} . Evaluating it similarly, as above, it is equal to 2015 2015 . In conclusion, our answer is 4030 503 + 2015 = 2029105 4030\cdot503 + 2015 = 2029105 , and so our answer is 105 \boxed {105} .

Uahbid Dey
Apr 6, 2014

201 4 2 201 3 2 + 201 2 2 201 1 2 + . . . . . + 2 2 1 2 2014^{2}-2013^{2}+2012^{2}-2011^{2}+.....+2^{2}-1^{2} = ( 2014 + 2013 ) ( 2014 2013 ) + ( 2012 + 2011 ) ( 2012 2011 ) + . . . + ( 2 + 1 ) ( 2 1 ) =(2014+2013)(2014-2013)+(2012+2011)(2012-2011)+...+(2+1)(2-1) = ( 2014 + 2013 ) × 1 + ( 2012 + 2011 ) × 1 + . . . + ( 2 + 1 ) × 1 =(2014+2013)\times 1+(2012+2011)\times 1+...+(2+1)\times 1 = 2014 + 2013 + 2012 + 2011 + . . . + 2 + 1 = 2014 × 2015 2 = 2029105 =2014+2013+2012+2011+...+2+1=\frac{2014\times 2015}{2}=2029105 so, 105

Álvaro Rossano
Jan 3, 2014

2²-1=3= a1 ; 4²-3²=7= a2 ; 6²-5²=11= a3 ; 8²-7²=15 = a4 ; ... assim há uma P.A (progressão aritmética) de razão 4 onde o an pode ser escrito com [(2n)² - (2n-1)²] com n variando de 1 a 1007 ou uma P.A de razão 4 cujo a1 = 3 e possua 1007 termos. Assim recorrendo a soma de P.A S=(a1+ an)*n/2 = (3+4027)1007/2= 2.029.105

Ajit Athle
Dec 31, 2013

Taking the whole series by pairs of two, we get the required sum to be:3+7+11+....+4027 This sums up to (2015)(1007) = 2029105.

Lai Xu
Dec 31, 2013

201 4 2 201 3 2 + 201 2 2 201 1 2 + . . . + 2 2 1 2 2014^2-2013^2+2012^2-2011^2+...+2^2-1^2 = ( 2014 2013 ) ( 2014 + 2013 ) + ( 2012 2011 ) ( 2012 + 2011 ) + . . . + ( 2 1 ) ( 2 + 1 ) = (2014-2013)(2014+2013)+(2012-2011)(2012+2011)+...+(2-1)(2+1) = 2014 + 2013 + 2012 + 2011 + . . . + 2 + 1 =2014+2013+2012+2011+...+2+1 = ( 1 + 2014 ) 2014 2 =\frac{(1+2014)*2014}{2} = 2029105 =2029105 get the last three digits, we will have the answer 105 \boxed{105}

Anirudh Gopinath
Dec 27, 2013

First you realize that this is murica, the land of the free and the home of the brave

Second, you realize 4-1 = 3 16-9 = 7 36-25 = 11

and so on..

Then using these murican powers, you realize using real eyes that:

This is just (1007) * (3+2012)

Hùng Minh
Dec 26, 2013

2014^2−2013^2 = (2014+2013)(2014-2013) = 2014+2013 2012^2−2011^2 = (2012+2011)(2012-2011) = 2012+2011 So, we have 2014 + 2013 + 2012 + 2011 + 2010 + 2009 + 2008 +...+ 2 + 1. 2014 + 1 = 2015; 2013 + 2 = 2015... and 2014/2 = 1007. So, 2014 + 2013 + 2012 + 2011 + 2010 + 2009 + 2008 +...+ 2 + 1 = 2015 x 1007 = 2.029.105. The result is 105

Kingshuk Mitra
Dec 26, 2013

Each pair is a^2 - (a-1)^2 = a + a-1

Series = 2014 + 2013 + 2012 + 2011 + ... + 1 = 2014 * 2015 / 2

Ashik Meerankutty
Dec 26, 2013

Sum of n = n/2(a=l) = 2014/2(2014+1) = 1007(2015) = 2029105 So the last three digits are 1,0,5 =105

Aditya Kumar
Dec 25, 2013

(2014^2 - 2013^2)+(2012^2 - 2011^2) ...........+(2^2 -1^2)
=(2014+2013)(2014-2013)+(2012+2011)(2012-2011)..................+(2 +1)(2 -1) =2014+2013+2012+2011+...........2 +1 =(2014*2015)/2
=2029105

So, the last 3 digits are 105

Lim Zi Heng
Dec 25, 2013

According to a 2 b 2 = ( a + b ) ( a b ) a^2 - b^2 = (a + b)(a - b)

( 2014 + 2013 ) ( 2014 2013 ) + ( 2012 + 2011 ) ( 2012 2011 ) + + ( 2 + 1 ) ( 2 1 ) (2014 + 2013)(2014 - 2013) + (2012 + 2011)(2012 - 2011) + \dots + (2 + 1)(2 - 1) = 4027 + 4023 + + 3 = 4027 + 4023 + \dots + 3

There are 1007 terms,

So, n = 1007 n = 1007

a 1 = 4027 a_1 = 4027

a n = 3 a_n = 3

Using S = n 2 ( a 1 + a n ) S = \frac {n}{2}(a_1 + a_n)

S = 1007 2 ( 4027 + 3 ) S=\frac {1007}{2}(4027 + 3)

S = 2029105 S=2029105

2029 105 2029 \boxed{105}

So, the answer is 105 105

Samanth Bonagiri
Dec 25, 2013

(2014+2013)(2014-2013)+(2012+2011)(2012+2011)+........................+(2+1)(2-1) =1+2+3+4+5..........................+2011+2012+2013+2014=1021105

Rahul Saha
Dec 25, 2013

Using the algebraic identity

a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b)

we can rewrite our expression as

( 2014 + 2013 ) ( 2014 2013 ) + ( 2012 + 2011 ) ( 2012 2011 ) + . . . . . . . . . . + ( 2 + 1 ) ( 2 1 ) (2014+2013)(2014-2013)+(2012+2011)(2012-2011)+..........+(2+1)(2-1)

which is just 2014 + 2013 + 2012 + 2011 + . . . . . . . . . . . . + 3 + 2 + 1 2014+2013+2012+2011+............+3+2+1 .The sum is just

2014 2015 2 = 1007 2015 \dfrac{2014\cdot 2015}{2}=1007\cdot 2015

Since we only want the last three digits,we look at the final expression mod \text{mod} 1000 1000 and that gives us 105.

Vilsan Gupta
Dec 25, 2013

Here we apply the formula a's power 2-b's power 2=(a-b)(a+b) so 2014 power 2- 2013 power 2=(2014-2013)(2014+2013) it will become 1*(2014+2013)=2014+2013
finally we found a series: 2014+2013+. . . +2+1 and solve this with the formula n(n+1)/2 so 2014(2014+1)/2=2029105 and last three digits are 105

Maria Felicita
Dec 25, 2013

it can be write like this

(2014 - 2013) (2014 + 2013) + (2012 - 2011)(2012+2011) + ... + (2-1)(2+1)

it form an aritmethic formula

Sn = 1 2 \frac{1}{2} n (2a + (n - 1) b )

Sn = 1 2 \frac{1}{2} 2014 (2 . 1 + (2014-1) 1)

Sn = 1007 × \times 2015

Sn = 2029105

the last three digits of the alternating sum is 105 \boxed{105}

good job

Hasan Mahdi - 7 years, 5 months ago
Budi Utomo
Dec 24, 2013

The problem above can change into (2014+2013)(2014-2013) + (2012+2011)(2012-2011) + ... + (4+3)(4-3) + (2+1)(2-1) = (2014+2013).1 + (2012+2011).1 + ... + (2+1).1 = 1 + 2 + 3 + ... + 2014 = 2014.2014/2 = ......105. Answer : 105

*we can rewrite the expression in the following way: *

( 201 4 2 201 3 2 ) + ( 201 2 2 201 1 2 ) + . . . . . . . . . . . . . . . . + ( 2 2 1 2 ) (2014^{2} - 2013^{2}) + (2012^{2} - 2011^{2}) + ................+(2^{2} - 1^{2})

  • by applying the formula* a 2 b 2 = ( a + b ) ( a b ) a^{2} - b^{2} = (a+b)*(a -b) *,the expression becomes: *

( 2014 2013 ) ( 2014 + 2013 ) + ( 2012 2011 ) ( 2012 + 2011 ) + . . . . . . . . . . . . . . . . + ( 2 1 ) ( 2 + 1 ) (2014 - 2013)*(2014 + 2013) + (2012 - 2011)*(2012 + 2011) +................+(2 - 1)*(2 + 1)

  • the final expression becomes: *

4027 + 4023 + . . . . . . . . . + 3 4027 + 4023 +.........+ 3

this is nothing but an Arithmetic Progression of first term 4027 , n t h n^{th} term 3 and common difference -4

  • the value of n can be found out in the following manner*

3 = 4027 ( n 1 ) 4 3 = 4027 - ( n -1)* 4

equating this we get n = 1007 n = 1007

sum of 1007 terms S = 1007 2 ( 4027 + 3 ) \frac{1007}{2}*( 4027 + 3) = . . . . . . . . . . . 105 = ...........105

so the last three digits of the sum are 1 0 and 5

Saurav Ray
Dec 24, 2013

It can be written as 2014+2013+2012...............+1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...