2014-philic Cubic

Algebra Level 5

Let P ( x ) = x 3 ( 2014 + 2 2014 ) x + 4028 P(x)=x^3-(2014+2\sqrt{2014})x+4028

If the smallest root of P ( x ) P(x) is r 1 r_1 , and the other two roots are r 2 r_2 and r 3 r_3 , then r 2 × r 3 r_2\times r_3 can be expressed as a + b + c d a+\sqrt{b+c\sqrt{d}} for integers a , b , c , d a, b, c, d with d d square-free. Find a + b + c + d ( m o d 10000 ) a+b+c+d\pmod{10000}

Note: if you are going to use Wolfram Alpha, don't even bother answering the problem (cheater!)


The answer is 9084.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Liu
Apr 2, 2014

Since we can see that our polynomial has a lot to do with 2014 2014 , let's let a = 2014 a=2014 .

Our polynomial turns into x 3 ( a + 2 a ) x + 2 a x^3-(a+2\sqrt{a})x+2a .

Hmm... I don't really like those square roots. So instead, let's let a = 2014 a=\sqrt{2014} .

Our polynomial is now x 3 ( a 2 + 2 a ) x + 2 a 2 x^3-(a^2+2a)x+2a^2 .

Distributing gives x 3 a 2 x 2 a x + 2 a 2 x^3-a^2x-2ax+2a^2

We can partially factor: x ( x 2 a 2 ) 2 a ( x a ) x(x^2-a^2)-2a(x-a)

We can factor the difference of squares further: x ( x + a ) ( x a ) 2 a ( x a ) x(x+a)(x-a)-2a(x-a)

Aha! We have a common ( x a ) (x-a) term so we can complete the factoring to get: P ( x ) = ( x a ) ( x ( x + a ) 2 a ) P(x)=(x-a)(x(x+a)-2a) or P ( x ) = ( x a ) ( x 2 + a x 2 a ) P(x)=(x-a)(x^2+ax-2a)

Now let's plug a = 2014 a=\sqrt{2014} back in. We get P ( x ) = ( x 2014 ) ( x 2 + 2014 x 2 2014 ) P(x)=(x-\sqrt{2014})(x^2+\sqrt{2014}x-2\sqrt{2014})

We have one factor already: x = 2014 x=\sqrt{2014} . We are left with a quadratic, which we can thankfully solve via the quadratic equation:

x = 2014 ± 2014 + 8 2014 2 x=\dfrac{-\sqrt{2014}\pm \sqrt{2014+8\sqrt{2014}}}{2}

We can see that when the ± \pm sign is negative, the root is negative. When the ± \pm sign is positive, the root is also positive, because 2014 + 8 2014 > 2014 \sqrt{2014+8\sqrt{2014}} > \sqrt{2014} .

Therefore, r 1 = 2014 2014 + 8 2014 2 r_1=\dfrac{-\sqrt{2014}- \sqrt{2014+8\sqrt{2014}}}{2} .

This means we want to find r 2 r 3 = 2014 ( 2014 + 2014 + 8 2014 2 ) r_2r_3=\sqrt{2014}\cdot \left(\dfrac{-\sqrt{2014}+\sqrt{2014+8\sqrt{2014}}}{2} \right)

Distributing, we get r 2 r 3 = 2014 + 2014 ( 2014 + 8 2014 ) 2 r_2r_3=\dfrac{-2014+\sqrt{2014(2014+8\sqrt{2014})}}{2}

Simplifying: r 2 r 3 = 1007 + 1007 ( 1007 + 4 2014 ) r_2r_3=-1007+\sqrt{1007(1007+4\sqrt{2014})}

Distributing the 1007 1007 inside the radical: r 2 r 3 = 1007 + 1014049 + 4028 2014 r_2r_3=-1007+\sqrt{1014049+4028\sqrt{2014}}

This is the form that we want. We can see that a = 1007 a=-1007 b = 1014049 b=1014049 c = 4028 c=4028 d = 2014 d=2014

Therefore our final answer is 1007 + 1014049 + 4028 + 2014 ( m o d 10000 ) = 9084 -1007+1014049+4028+2014\pmod{10000}=\boxed{9084}

Bloody brilliant. This is a great problem!

Finn Hulse - 7 years, 2 months ago

Log in to reply

Thanks!

I don't want to sound desperate or too full of myself, because I'm not, but if you think it's a good enough problem you can share it and/or like it. :)

Daniel Liu - 7 years, 2 months ago

I got lucky with this one. went with a trial and error for x = sqrt2014. Once the first root was available, finding the other 2 were easy.

Madhavan Daksh - 7 years, 2 months ago

excellent problem ..

saurabh kumar agrawal - 7 years, 1 month ago

H e l l o . M y s o l u t i o n w a s s l i g h t l y d i f f e r e n t s i n c e I d i d n o t n o t i c e t h a t o n e o f t h e r o o t s i s 2014 f r o m t h e b e g i n n i n g . L e t P ( x , α ) = x 3 ( α 2 + 2 α ) x + 2 α 2 = α 2 ( 2 x ) + α ( 2 x ) + x 3 . A f t e r s o l v i n g f o r α i n P ( x , α ) = 0 w e o b t a i n α = x 2 2 x o r α = x , w h i c h m e a n s t h a t t h e t h r e e r o o t s o f P ( x , α ) i n t e r m s o f α a r e x = α a n d x = α ± α 2 + 8 α 2 . S i n c e α i s n o n n e g a t i v e , t h e s m a l l e s t r o o t i s r 1 = α α 2 + 8 α 2 , s o r 2 r 3 = α 2 + α α 2 + 8 α 2 . F o r α = 2014 , r 2 r 3 = 1007 + 1007 2 + 4028 2014 , t h e r e f o r e a + b + c + d = 1007 × 1012 9084 ( m o d 10000 ) . Hello.\quad My\quad solution\quad was\quad slightly\quad different\quad since\quad I\quad did\\ not\quad notice\quad that\quad one\quad of\quad the\quad roots\quad is\quad \sqrt { 2014 } \quad from\quad the\\ beginning.\quad \\ Let\quad P(x,\alpha )={ x }^{ 3 }-({ \alpha }^{ 2 }+2\alpha )x+2{ \alpha }^{ 2 }={ \alpha }^{ 2 }(2-x)+\alpha (-2x)+{ x }^{ 3 }.\\ After\quad solving\quad for\quad \alpha \quad in\quad P(x,\alpha )=0\quad we\quad obtain\quad \alpha =\frac { { x }^{ 2 } }{ 2-x } \\ or\quad \alpha =x,\quad which\quad means\quad that\quad the\quad three\quad roots\quad of\quad P(x,\alpha )\\ in\quad terms\quad of\quad \alpha \quad are\quad x=\alpha \quad and\quad x=\frac { -{ \alpha }\pm \sqrt { { \alpha }^{ 2 }+8\alpha } }{ 2 } .\\ Since\quad \alpha \quad is\quad non-negative,\quad the\quad smallest\quad root\quad is\\ { r }_{ 1 }=\frac { -{ \alpha }-\sqrt { { \alpha }^{ 2 }+8\alpha } }{ 2 } ,\quad so\quad { r }_{ 2 }{ r }_{ 3 }=\frac { -{ \alpha }^{ 2 }+\alpha \sqrt { { \alpha }^{ 2 }+8\alpha } }{ 2 } .\\ For\quad \alpha =\sqrt { 2014 } ,\quad { r }_{ 2 }{ r }_{ 3 }=-1007+\sqrt { { 1007 }^{ 2 }+4028\sqrt { 2014 } } ,\\ therefore\quad a+b+c+d=1007\times 1012\equiv 9084\quad (mod\quad 10000).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...