2015

Calculus Level 2

n = 1 2015 n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! \displaystyle{\sum _{ n=1 }^{ 2015 }{ \frac { { n }^{ 2 }+n+1 }{ \left( { n }^{ 2 }+n \right) \left( n+1 \right) ! } }} can be represented in the form a b \dfrac { a }{ b } , where a a and b b are coprime positive integers. Find the value of a b a-b .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Aareyan Manzoor
Feb 27, 2015

simplify as: = n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! = ( n + 1 ) 2 n ( n + 1 ) 2 n ! n n ( n + 1 ) ( n + 1 ) ! = 1 n n ! 1 ( n + 1 ) ( n + 1 ) ! \begin{array}{c}=&\dfrac{n^2+n+1}{(n^2+n)*(n+1)!}\\ =&\dfrac{(n+1)^2}{n*(n+1)^2*n!}-\dfrac{n}{n*(n+1)*(n+1)!}\\ =&\dfrac{1}{n*n!}-\dfrac{1}{(n+1)*(n+1)!} \end{array} hence n = 1 2015 ( n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! ) = n = 1 2015 ( 1 n n ! ) n = 1 2015 ( 1 ( n + 1 ) ( n + 1 ) ! ) = n = 1 2015 ( 1 n n ! ) n = 2 2016 ( 1 n n ! ) \sum_{n=1}^{2015} (\dfrac{n^2+n+1}{(n^2+n)*(n+1)!})=\sum_{n=1}^{2015} (\dfrac{1}{n*n!})-\sum_{n=1}^{2015}(\dfrac{1}{(n+1)*(n+1)!})=\sum_{n=1}^{2015} (\dfrac{1}{n*n!})-\sum_{n=2}^{2016}(\dfrac{1}{n*n!}) we see that all terms except last and first cancels out,hence n = 1 2015 ( n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! ) = 1 1 1 ! 1 2016 2016 ! = 2016 2016 ! 1 2016 2016 ! \sum_{n=1}^{2015} (\dfrac{n^2+n+1}{(n^2+n)*(n+1)!})=\dfrac{1}{1*1!}-\dfrac{1}{2016*2016!}=\dfrac{2016*2016!-1}{2016*2016!} hence a b = ( 2016 2016 ! 1 ) 2016 2016 ! = 1 a-b=(2016*2016!-1)-2016*2016!=\boxed{-1}

Moderator note:

Nicely done! You should be able to get the generalization:

n = 1 m n 2 + n + 1 ( n 2 + n ) ( n + 1 ) ! = 1 1 ( m + 1 ) ( m + 1 ) ! \displaystyle{\sum _{ n=1 }^{ m }{ \frac { { n }^{ 2 }+n+1 }{ \left( { n }^{ 2 }+n \right) \left( n+1 \right) ! } }} = 1 - \frac {1}{(m+1)(m+1)!} .

Brock Brown
Feb 27, 2015

Python:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
from fractions import Fraction as frac
from math import factorial as fac
total = 0
for n in xrange(1,2016):
    top = n*n+n+1
    bottom = (n*n+n)*fac(n+1)
    total += frac(top, bottom)
top = total.numerator
bottom = total.denominator
print "Answer:", top-bottom

Tanishq Varshney
Feb 27, 2015

n = 1 n 1 n × n ! 1 ( n + 1 ) × ( n + 1 ) ! \displaystyle \sum_{n=1}^{n} \frac{1}{n \times n!}-\frac{1}{(n+1)\times (n+1)!}

=> 1 1 ( n + 1 ) ( n + 1 ) ! 1-\frac{1}{(n+1)(n+1)!}

Replace n = 2015 n=2015

we get 1 1 ( 2016 ) × ( 2016 ) ! 1-\frac{1}{(2016)\times (2016)!}

now compare it to a b \frac{a}{b}

b = ( 2016 ) × ( 2016 ) ! b=(2016)\times (2016)! ................................ 1 1

and the numerator is ( 2016 ) × ( 2016 ) ! 1 (2016)\times (2016)!-1 [This is supposed to be a a ]

=> From 1 1 we get, b 1 = a b-1=a

a b = 1 \boxed{a-b=-1}

Do upvote

Moderator note:

This solution has been marked wrong. You should carefully assign your variables.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...