2015 again

Algebra Level 3

Let x x be a non-real number that satisfy the equation x 4 = 1 x^{4}=1 . Find the value of n = 0 2015 ( x n + 1 x n ) \displaystyle \sum_{n=0}^{2015} \left (x^{n}+\frac{1}{x^{n}} \right) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 10, 2015

x 4 = 1 { x 3 + x 2 + x + 1 = 0 1 + 1 x + 1 x 2 + 1 x 3 = 0 x^4 = 1 \implies \begin{cases} x^3+x^2+x+1&=0 \\ 1 + \dfrac{1}{x} + \dfrac{1}{x^2} + \dfrac{1}{x^3} & = 0 \end{cases}

n = 0 2015 ( x n + 1 x n ) = n = 0 2015 x n + n = 0 2015 1 x n = k = 0 503 x 4 k ( 1 + x + x 2 + x 3 ) + k = 0 503 1 x 4 k ( 1 + 1 x + 1 x 2 + 1 x 3 ) = k = 0 503 x 4 k ( 0 ) + k = 0 503 1 x 4 k ( 0 ) = 0 \begin{aligned} \sum_{n=0}^{2015} \left(x^n + \frac{1}{x^n} \right) & = \sum_{n=0}^{2015} x^n + \sum_{n=0}^{2015} \frac{1}{x^n} \\ & = \sum_{k=0}^{503} x^{4k}(1+x+x^2+x^3) + \sum_{k=0}^{503} \frac{1}{x^{4k}} \left( 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} \right) \\ & = \sum_{k=0}^{503} x^{4k}(\color{#D61F06}{0}) + \sum_{k=0}^{503} \frac{1}{x^{4k}} \left( \color{#D61F06}{0} \right) \\ & = \boxed{0} \end{aligned}

Moderator note:

Nice way to break up the sum!

how do you say x^3....+1 equals zero

Tarun B - 3 years, 8 months ago

Log in to reply

When x n = 1 x^n = 1 , then x n 1 + x n 2 + . . . + x 2 + x + 1 = 0 x^{n-1} + x^{n-2}+...+x^2+x+1 = 0 . Consider the following:

x 3 + x 2 + x + 1 = 0 Multiplying both sides by x x 4 + x 3 + x 2 + x = 0 Adding both sides by 1 x 4 + x 3 + x 2 + x + 1 = 1 Note that x 3 + x 2 + x + 1 = 0 x 4 + 0 = 1 x 4 = 1 \begin{aligned} x^3+x^2+x+1 & = 0 & \small \color{#3D99F6} \text{Multiplying both sides by }x \\ x^4+x^3+x^2+x & = 0 & \small \color{#3D99F6} \text{Adding both sides by }1 \\ x^4+\color{#3D99F6}x^3+x^2+x + 1 & = 1 & \small \color{#3D99F6} \text{Note that } x^3+x^2+x+1 = 0 \\ x^4 + \color{#3D99F6} 0 & = 1 \\ \implies x^4 & = 1 \end{aligned} .

Chew-Seong Cheong - 3 years, 8 months ago

Thank you. I got it

Tarun B - 3 years, 8 months ago

We have that x 4 1 = ( x 2 1 ) ( x 2 + 1 ) = ( x 1 ) ( x + 1 ) ( x + i ) ( x i ) . x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x + i)(x - i).

So the roots distinct from ± 1 \pm 1 are ± i . \pm i. Now i n = i n + 4 i^{n} = i^{n+4} and ( i ) n = ( i ) n + 4 , (-i)^{n} = (-i)^{n+4}, so for each of these values we have that

n = 0 2015 ( x n + 1 x n ) = 504 n = 0 3 ( x n + 1 x n ) , \displaystyle\sum_{n=0}^{2015} \left(x^{n} + \dfrac{1}{x^{n}}\right) = 504 \sum_{n=0}^{3} \left(x^{n} + \dfrac{1}{x^{n}}\right),

since the given sum has 2016 = 4 504 2016 = 4*504 terms, and thus 504 504 "cycles" of the same sum. Now

n = 0 3 ( i n + 1 i n ) = \displaystyle\sum_{n=0}^{3} \left(i^{n} + \dfrac{1}{i^{n}}\right) =

( 1 + 1 1 ) + ( i + 1 i ) + ( 1 + 1 1 ) + ( i + 1 i ) = \left(1 + \dfrac{1}{1}\right) + \left(i + \dfrac{1}{i}\right) + \left(-1 + \dfrac{1}{-1}\right) + \left(-i + \dfrac{1}{-i}\right) =

2 + i 2 + 1 i + ( 2 ) + i 2 + 1 i = 0. 2 + \dfrac{i^{2} + 1}{i} + (-2) + \dfrac{i^{2} + 1}{-i} = 0.

Similarly for x = i . x = -i. Thus the original sum is 0 \boxed{0} as well.

Tay Yong Qiang
Aug 18, 2015

Let x = e i θ x=e^{i\theta}

x 4 = 1 x^4=1

e 4 i θ = e 2 i k π e^{4i\theta}=e^{2ik\pi}

θ = k π 2 \theta=\frac{k\pi}{2}

By De Movire's Theorem, x n + x n = e i n k π 2 + e i n k π 2 = 2 cos n k π 2 x^{n}+x^{-n}=e^{\frac{ink\pi}{2}} +e^{\frac{-ink\pi}{2}}=2\cos{\frac{nk\pi}{2}}

The sum thus reduces to

2 n = 0 2015 cos n k π 2 2\sum_{n=0}^{2015}\cos{\frac{nk\pi}{2}}

Notice that cos 0 π 2 + cos π 2 + cos 2 π 2 + cos 3 π 2 = 0 \cos{\frac{0\pi}{2}}+\cos{\frac{\pi}{2}}+\cos{\frac{2\pi}{2}}+\cos{\frac{3\pi}{2}}=0

The cosine function is periodic, with a period of π \pi , hence we have 503 "cycles" of the same sum of zero, since 2015 = 4 ( 503 ) + 3 2015= 4(503)+3 .

Thus, 2 n = 0 2015 cos n k π 2 2\sum_{n=0}^{2015}\cos{\frac{nk\pi}{2}} = 2 [ 503 × 0 + cos 0 π 2 + cos π 2 + cos 2 π 2 ] 2[503×0+\cos{\frac{0\pi}{2}}+\cos{\frac{\pi}{2}}+\cos{\frac{2\pi}{2}}] = 2 ( 0 + 1 + 0 1 ) = 0 =2(0+1+0-1)=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...