2015 and Fibonacci

Calculus Level 5

Let a 1 a_1 , a 2 a_2 , a 3 a_3 , \dots , a 2014 a_{2014} , and a 2015 a_{2015} be real numbers and also let

f ( x ) = { x + a 1 x 1 2 x + a 2 1 < x 2 3 x + 2 a 3 2 < x 3 2014 x + F 2014 a 2014 2013 < x 2014 2015 x + F 2015 a 2015 2014 < x 2015 2016 x + F 2016 a 1 x > 2015 f(x) = \begin{cases}x + a_1 & & x \le 1 \\ 2x + a_2 & & 1 < x \le 2 \\ 3x + 2a_3 & & 2 < x \le 3 \\ \quad \cdots & & \quad \cdots \\ 2014x + F_{2014}a_{2014} & & 2013 < x \le 2014 \\2015x + F_{2015}a_{2015} & & 2014 < x \le 2015 \\ 2016x + F_{2016}a_{1} & & x > 2015 \end{cases}

where F n F_n is the n n th Fibonacci number .

If f ( x ) f\left( x \right) is continuous everywhere, then the maximum value of a 1 + a 2 + a 3 + + a 2014 + a 2015 a_1 + a_2 + a_3 + \dots + a_{2014} + a_{2015} can be expressed as α F β F γ 1 -\dfrac { \alpha }{ F_\beta - F_\gamma - 1 } , where α \alpha , β \beta , and γ \gamma are positive integers. Find the value of α + β + γ \alpha + \beta + \gamma .

Please show your solutions,

Image credit: Flickr Jean


The answer is 2035155.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...