Which of the following is the largest?
A. 2 1 1 2 1 1 2 1 1 2 1 1 . . . − 3 3 3 3 3 3 3 3 . . .
B. 2 1 + 1 + 2 0 1 4 − 2 0 1 4 1 + 1 + 2 0 1 3 − 2 0 1 3 1 + 1 + 2 0 1 2 − 2 0 1 2 1 + . . . + 1 + 2 0 1 2 2 0 1 2 1 + 1 + 2 0 1 3 2 0 1 3 1 + 1 + 2 0 1 4 2 0 1 4 1
C. 1 0 0 8 × ( 1 − 2 2 1 ) − 1 × ( 1 − 3 2 1 ) − 1 × ( 1 − 4 2 1 ) − 1 . . . ( 1 − 2 0 1 3 2 1 ) − 1 × ( 1 − 2 0 1 4 2 1 ) − 1 × ( 1 − 2 0 1 5 2 1 ) − 1
This problem is part of the set 2015 Countdown Problems .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Same way genius!! great solution
Note: for B, I was unsure if by your series that if 1 + 0 0 1 was going to be part of your summation, it would be great to clarify (although the option can be solved just from figuring out A=C)
Problem Loading...
Note Loading...
Set Loading...
y = k y → y 2 = k y
y = k (reject y=0)
Value = 2 1 1 − 3 3 = 2 0 1 5
( 1 + k n 1 ) 1 + ( 1 + k n ) 1 = ( k n + 1 ) k n + ( 1 + k n ) 1 = 1
hence the sum is independent of both k and n.
Note the lone term 1 + ( 2 0 1 2 ) 0 1 = 2 1 in the series is not part of any pair.
Sum = 2 1 + 2 0 1 4 × 1 + 2 1 = 2 0 1 5
( 1 − k 2 1 ) − 1 = ( k 2 ( k + 1 ) ( k − 1 ) ) − 1 = ( k + 1 ) ( k − 1 ) k 2 = ( k + 1 ) k × ( k − 1 ) k
1 0 0 8 ( 1 − 2 2 1 ) − 1 ( 1 − 3 2 1 ) − 1 … ( 1 − 2 0 1 4 2 1 ) − 1 ( 1 − 2 0 1 5 2 1 ) − 1
= 1 0 0 8 ( 3 2 × 1 2 ) ( 4 3 × 2 3 ) … ( 2 0 1 5 2 0 1 4 × 2 0 1 3 2 0 1 4 ) ( 2 0 1 6 2 0 1 5 × 2 0 1 4 2 0 1 5 )
= 1 0 0 8 ( 3 2 × 4 3 × … × 2 0 1 5 2 0 1 4 × 2 0 1 6 2 0 1 5 ) ( 1 2 × 2 3 × … × 2 0 1 3 2 0 1 4 × 2 0 1 4 2 0 1 5 )
= 1 0 0 8 ( 2 0 1 6 2 ) ( 2 0 1 5 )
= 2 0 1 5