2015 Happy New Year Special

Evaluate 201 5 2 201 4 2 + 201 3 2 201 2 2 + . . . + 3 2 2 2 + 1 2 ( m o d 2015 ) 2015^{2}-2014^{2}+2013^{2}-2012^{2}+...+3^{2}-2^{2}+1^{2} \pmod{2015} .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matthew Cox
Jan 5, 2015

For any pair of numbers a and b we know that a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b) , so 201 5 2 201 4 2 = ( 2015 + 2014 ) ( 2015 2014 ) = ( 2015 + 2014 ) ( 1 ) = 2015 + 2014 2015^2-2014^2=(2015+2014)(2015-2014)=(2015+2014)(1)=2015+2014 . Repeat for 2013 and 2012, 2011 and 2010, etc, and you find that the sum of the sequence is the sum of every number from 1 to 2015. Apply Gauss' formula n ( n + 1 ) 2 \frac{n(n+1)}{2} and you find that the sum of the first 2015 numbers is 2015 × 2014 2 = 2015 × 1007 \frac{2015\times 2014}{2}=2015\times 1007 , which is obviously 0 ( m o d 2015 ) 0\pmod{2015} .

Adarsh Kumar
Jan 1, 2015

First,notice that 201 5 2 0 ( m o d 2015 ) ( 2014 ) 2 1 ( m o d 2015 ) , 1 2 1 ( m o d 2015 ) 201 3 2 2 2 4 ( m o d 2015 ) , ( 2 2 ) 4 ( m o d 2015 ) ( 201 2 2 ) 3 2 9 ( m o d 2015 ) , 3 2 9 ( m o d 2015 ) . . . . ( 100 8 2 ) ( 1007 ) 2 ( m o d 2015 ) , 100 7 2 100 7 2 ( m o d 2015 ) 2015^2\equiv 0\pmod{2015}\\-(2014)^2\equiv -1\pmod{2015},1^2\equiv 1\pmod{2015}\\ 2013^2\equiv 2^2\equiv 4\pmod{2015},-(2^2)\equiv -4\pmod{2015}\\ -(2012^2)\equiv -3^2\equiv-9\pmod{2015},3^2\equiv 9\pmod{2015}\\.\\.\\.\\.\\ -(1008^2)\equiv -(1007)^2\pmod{2015},1007^2\equiv1007^2\pmod{2015} .When we add all the above expressions we have 201 5 2 201 4 2 + 201 3 2 . . . . . . . . + 3 2 2 2 + 1 2 0 ( m o d 2015 ) 2015^2-2014^2+2013^2........+3^2-2^2+1^2\equiv 0\pmod{2015} .

a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b) . A bit of rearranging makes ( a + b ) = 2015 (a+b)=2015 :D

Satvik Golechha - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...