If
a
2
+
a
3
+
.
.
.
+
a
2
0
1
5
a
1
+
a
1
+
a
3
+
.
.
.
+
a
2
0
1
5
a
2
+
a
1
+
a
2
+
a
4
+
.
.
.
+
a
2
0
1
5
a
3
+
.
.
.
+
a
1
+
a
2
+
.
.
.
+
a
2
0
1
3
+
a
2
0
1
5
a
2
0
1
4
+
a
1
+
a
2
+
.
.
.
+
a
2
0
1
4
a
2
0
1
5
≥
K
find
K
Details and assumptions:
a 1 , a 2 , . . . , a 2 0 1 4 , a 2 0 1 5 are positive real numbers.
Give your answer to 4 decimals
This problem was inspired by N e s b i t t . . . . . . . n o by Kristian Vasilev
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Generalizing the question, we get i = 1 ∑ n ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎛ i = 1 ∑ n a i ⎠ ⎟ ⎟ ⎟ ⎟ ⎞ − a i a i ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ ≥ n − 1 n
Nice!
1 ∑ 2 0 1 5 = x
x − a 1 a 1 + x − a 2 a 2 + . . . . + x − a 2 0 1 5 a 2 0 1 5
x − a 1 x − 1 + x − a 2 x − 1 + . . x − a 2 0 1 5 x − 1 = i = 1 ∑ 2 0 1 5 ( x − a i x − 1 )
2 0 1 5 ∑ i = 1 2 0 1 5 x − a i x ≥ i = 1 ∑ 2 0 1 5 x x − a i 2 0 1 5
2 0 1 5 ∑ i = 1 2 0 1 5 x − a i x ≥ 2 0 1 4 x 2 0 1 5 x
i = 1 ∑ 2 0 1 5 ( x − a i x − 1 ) ≥ 2 0 1 4 2 0 1 5
Min will occur when all the ai's become equal . so it can be an objective trick
since question stated that each term should be a positive real no. , hence i put each term equals to 1.. since in this inequality equality will hold when each term will be equal .. thus by doing this i got the result 2015/2014
if we exchange any a i with any a j , the sum value will be same. So the sum is symmetric and the minimum occurs when all a i 's are same. which gives 2015/2014.
It isn't necessary that minimum in a symmetric function/sum will always occur when all the variables are same. Check out this discussion on the topic.
Problem Loading...
Note Loading...
Set Loading...
Let a 1 ≥ a 2 ≥ a 3 ≥ a 4 . . . . . . . . . . . . . . . . ≥ a 2 0 1 5
By this
a 2 + a 3 + a 4 + . . . . + a 2 0 1 5 1 ≥ a 1 + a 3 + a 4 + . . . + a 2 0 1 5 1 ≥ a 1 + a 2 + a 4 . . . . . . + a 2 0 1 5 1 . . . ≥ a 1 + a 2 + a 3 . . . + a 2 0 1 4 1
Apply R e − a r r a n g e m e n t i n e q u a l i t y to get 2 0 1 4 ( a 2 + a 3 + a 4 + . . . + a 2 0 1 5 1 + a 1 + a 3 + a 4 + . . . + a 2 0 1 5 1 + a 1 + a 2 + a 4 . . . + a 2 0 1 5 1 . . . + a 1 + a 2 + a 3 . . . + a 2 0 1 4 1 ) ≥ 2 0 1 5 ( a 1 + a 2 + a 3 + . . . + a 2 0 1 5 a 1 + a 2 + a 3 + . . . + a 2 0 1 5 )
a 2 + a 3 + a 4 + . . . + a 2 0 1 5 1 + a 1 + a 3 + a 4 + . . . + a 2 0 1 5 1 + a 1 + a 2 + a 4 . . . + a 2 0 1 5 1 . . . + a 1 + a 2 + a 3 . . . + a 2 0 1 4 1 ≥ 2 0 1 4 2 0 1 5
By this K = 2 0 1 4 2 0 1 5