2015 is coming!

Algebra Level 3

If a 1 a 2 + a 3 + . . . + a 2015 + a 2 a 1 + a 3 + . . . + a 2015 + a 3 a 1 + a 2 + a 4 + . . . + a 2015 + . . . + a 2014 a 1 + a 2 + . . . + a 2013 + a 2015 + a 2015 a 1 + a 2 + . . . + a 2014 K \frac { { a }_{ 1 } }{ { a }_{ 2 }+{ a }_{ 3 }+...+{ a }_{ 2015 } } +\frac { { a }_{ 2 } }{ { a }_{ 1 }+{ a }_{ 3 }+...+{ a }_{ 2015 } } +\frac { { a }_{ 3 } }{ { a }_{ 1 }+{ a }_{ 2 }+{ a }_{ 4 }+...+{ a }_{ 2015 } } +...+\frac { { a }_{ 2014 } }{ { a }_{ 1 }+{ a }_{ 2 }+...+{ a }_{ 2013 }+{ a }_{ 2015 } } +\frac { { a }_{ 2015 } }{ { a }_{ 1 }+{ a }_{ 2 }+...+{ a }_{ 2014 } } \ge K find K K

Details and assumptions:

  • a 1 , a 2 , . . . , a 2014 , a 2015 { a }_{ 1 },{ a }_{ 2 },...,{ a }_{ 2014 },{ a }_{ 2015 } are positive real numbers.

  • Give your answer to 4 decimals


This problem was inspired by N e s b i t t . . . . . . . n o Nesbitt.......no by Kristian Vasilev


The answer is 1.0005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Shubhendra Singh
Dec 20, 2014

Let a 1 a 2 a 3 a 4 . . . . . . . . . . . . . . . . a 2015 a_{1} \geq a_{2} \geq a_{3} \geq a_{4} ................\geq a_{2015}

By this

1 a 2 + a 3 + a 4 + . . . . + a 2015 1 a 1 + a 3 + a 4 + . . . + a 2015 1 a 1 + a 2 + a 4 . . . . . . + a 2015 . . . 1 a 1 + a 2 + a 3 . . . + a 2014 \dfrac{1}{a_{2}+a_{3}+a_{4}+ ....+a_{2015}} \geq \dfrac{1}{a_{1}+a_{3}+a_{4}+ ... +a_{2015}} \geq \dfrac{1}{a_{1}+a_{2}+ a_{4} ...... +a_{2015 }} ... \geq \dfrac{1}{a_{1}+a_{2}+a_{3} ...+a_{2014}}

Apply R e a r r a n g e m e n t i n e q u a l i t y Re-arrangement inequality to get 2014 ( 1 a 2 + a 3 + a 4 + . . . + a 2015 + 1 a 1 + a 3 + a 4 + . . . + a 2015 + 1 a 1 + a 2 + a 4 . . . + a 2015 . . . + 1 a 1 + a 2 + a 3 . . . + a 2014 ) 2015 ( a 1 + a 2 + a 3 + . . . + a 2015 a 1 + a 2 + a 3 + . . . + a 2015 ) 2014 ( \dfrac{1}{a_{2}+a_{3}+a_{4}+...+a_{2015}}+ \dfrac{1}{a_{1}+a_{3}+a_{4}+...+a_{2015}} + \dfrac{1}{a_{1}+a_{2}+ a_{4}...+a_{2015}}...+\dfrac{1}{a_{1}+a_{2}+a_{3}...+a_{2014}} ) \geq 2015(\dfrac{a_{1}+a_{2}+a_{3}+...+a_{2015}}{a_{1}+a_{2}+a_{3}+...+a_{2015}} )

1 a 2 + a 3 + a 4 + . . . + a 2015 + 1 a 1 + a 3 + a 4 + . . . + a 2015 + 1 a 1 + a 2 + a 4 . . . + a 2015 . . . + 1 a 1 + a 2 + a 3 . . . + a 2014 2015 2014 \dfrac{1}{a_{2}+a_{3}+a_{4}+ ...+a_{2015}}+ \dfrac{1}{a_{1}+a_{3}+a_{4}+ ...+a_{2015} }+ \dfrac{1}{a_{1}+a_{2}+ a_{4} ...+a_{2015} }...+\dfrac{1}{a_{1}+a_{2}+a_{3}...+a_{2014}} \geq \dfrac{2015}{2014}

By this K = 2015 2014 K=\dfrac{2015}{2014}

Generalizing the question, we get i = 1 n ( a i ( i = 1 n a i ) a i ) n n 1 \huge\displaystyle\sum_{i=1}^{n} \left( \dfrac{a_i}{\left( \displaystyle\sum_{i=1}^{n} a_i \right) - a_i} \right) \geq\dfrac{n}{n-1}

Aneesh Kundu - 6 years, 5 months ago

Nice!

1 2015 = x \displaystyle \sum_{1}^{2015} = x

a 1 x a 1 + a 2 x a 2 + . . . . + a 2015 x a 2015 \dfrac{a_{1}}{x - a_{1}} + \dfrac{a_{2}}{x - a_{2}} + .... + \dfrac{a_{2015}}{x - a_{2015}}

x x a 1 1 + x x a 2 1 + . . x x a 2015 1 = i = 1 2015 ( x x a i 1 ) \dfrac{x}{x - a_{1}} - 1 + \dfrac{x}{x - a_{2}} - 1 + .. \dfrac{x}{x - a_{2015}} - 1 = \displaystyle \sum_{i=1}^{2015}( \dfrac{x}{x - a_{i}} - 1)

i = 1 2015 x x a i 2015 2015 i = 1 2015 x a i x \displaystyle \dfrac{\sum_{i=1}^{2015} \dfrac{x}{x - a_{i}}}{2015} \geq \dfrac{2015}{ \displaystyle \sum_{i=1}^{2015} \dfrac{x - a_{i}}{x}}

i = 1 2015 x x a i 2015 2015 x 2014 x \displaystyle \dfrac{\sum_{i=1}^{2015} \dfrac{x}{x - a_{i}}}{2015} \geq \dfrac{2015x}{2014x}

i = 1 2015 ( x x a i 1 ) 2015 2014 \displaystyle \sum_{i=1}^{2015} (\dfrac{x}{x - a_{i}} -1) \geq \dfrac{2015}{2014}

U Z - 6 years, 5 months ago
Ap V
Aug 1, 2015

Min will occur when all the ai's become equal . so it can be an objective trick

Priyesh Pandey
Jan 3, 2015

since question stated that each term should be a positive real no. , hence i put each term equals to 1.. since in this inequality equality will hold when each term will be equal .. thus by doing this i got the result 2015/2014

Mattapalli Ram
Dec 22, 2014

if we exchange any a i a_{i} with any a j a_{j} , the sum value will be same. So the sum is symmetric and the minimum occurs when all a i a_{i} 's are same. which gives 2015/2014.

It isn't necessary that minimum in a symmetric function/sum will always occur when all the variables are same. Check out this discussion on the topic.

Prasun Biswas - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...