2015 Mock AIME I Problem 2: Logarithm System

Algebra Level 5

Suppose that x x and y y are real numbers such that log x 3 y = 20 13 \log_x 3y = \frac{20}{13} and log 3 x y = 2 3 \log_{3x}y=\frac23 . The value of log 3 x 3 y \log_{3x}3y can be expressed in the form a b \frac ab where a a and b b are positive relatively prime integers. Find a + b a+b .


The answer is 199.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ayush Verma
Oct 13, 2014

L e t log 3 x = X & log 3 y = Y t h e n , 20 13 = log x 3 y = 1 + Y X 20 X 13 Y 13 = 0 . . . . ( i ) & 2 3 = log 3 x y = Y 1 + X 2 X 3 Y + 2 = 0 . . . ( i i ) s o l v i n g t h e s e , X = 65 34 , Y = 66 34 log 3 x 3 y = 1 + Y 1 + X = 100 99 a + b = 100 + 99 = 199 Let\quad \log _{ 3 }{ x } =X\quad \& \quad \log _{ 3 }{ y } =Y\quad then,\\ \\ \cfrac { 20 }{ 13 } =\log _{ x }{ 3y } =\cfrac { 1+Y }{ X } \\ \\ \Rightarrow 20X-13Y-13=0\quad \quad \quad ....(i)\\ \\ \& \cfrac { 2 }{ 3 } =\log _{ 3x }{ y } =\cfrac { Y }{ 1+X } \\ \\ \Rightarrow 2X-3Y+2=0\quad \quad \quad \quad \quad ...(ii)\\ \\ solving\quad these,\\ \\ X=\cfrac { 65 }{ 34 } ,Y=\cfrac { 66 }{ 34 } \Rightarrow \log _{ 3x }{ 3y } =\cfrac { 1+Y }{ 1+X } =\cfrac { 100 }{ 99 } \\ \\ \Rightarrow a+b=100+99=199

log 3 x 3 y = log 3 x 3 + log 3 x y \log _{3x} { 3y } = \log _{3x} { 3 } + \log _{3x} { y }

Since log 3 x y = 2 3 \log _{3x} { y } = \frac {2} {3} is given, we only need to find log 3 x 3 \log _{3x} { 3 } .

From:

log x 3 y = 20 13 3 y = x 20 13 \log _{x} { 3y } = \frac {20}{13} \quad \Rightarrow 3y = x ^ { \frac {20}{13} }

log 3 x y = 2 3 y = ( 3 x ) 2 3 3 y = 3 ( 3 x ) 2 3 \log _{3x} { y } = \frac {2}{3} \quad \Rightarrow y = (3x) ^ { \frac {2}{3} } \quad \Rightarrow 3y = 3 (3x) ^ { \frac {2}{3} }

3 y = x 20 13 = 3 ( 3 x ) 2 3 \Rightarrow 3y = x ^ { \frac {20}{13} } = 3 (3x) ^ { \frac {2}{3} }

( 3 x ) 20 13 = 3 1 + 20 13 ( 3 x ) 2 3 ( 3 x ) 20 13 2 3 = 3 33 13 ( 3 x ) 34 39 = 3 33 13 \Rightarrow (3x) ^ { \frac {20}{13} } = 3 ^ { 1+ \frac {20}{13} } (3x) ^ { \frac {2}{3} } \quad \Rightarrow (3x) ^ {\frac {20}{13} - \frac {2}{3} } = 3 ^ {\frac {33}{13} } \quad \Rightarrow (3x) ^ {\frac {34}{39} } = 3 ^ {\frac {33}{13} }

( 3 x ) 34 39 × 13 33 = 3 ( 3 x ) 34 99 = 3 log 3 x 3 = 34 99 \Rightarrow (3x) ^ {\frac {34}{39} \times \frac {13}{33} } = 3 \quad \Rightarrow (3x) ^ {\frac {34}{99} } = 3 \quad \Rightarrow \log_{3x} {3} = \frac {34}{99}

log 3 x 3 y = log 3 x 3 + log 3 x y \Rightarrow \log _{3x} { 3y } = \log _{3x} { 3 } + \log _{3x} { y }

= 34 99 + 2 3 = 100 99 = a b a + b = 199 \quad \quad = \frac {34}{99} + \frac {2}{3} = \frac{100}{99} = \frac {a}{b}\quad \Rightarrow a+b = \boxed{199}

Rishabh Tiwari
May 23, 2016

Nice question.!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...