#2015_ KVPY 2015 preparations-4

Calculus Level 4

Find the value of the integral: 1 3 [ x ] cos ( π 2 ( x [ x ] ) ) d x \int _{ 1 }^{ 3 }{ \left[ x \right] \cos { \left( \frac { \pi }{ 2 } \left( x-\left[ x \right] \right) \right) dx } } where [ x ] \left[ x \right] denotes the largest integer not exceeding x x .

More questions related to KVPY?


The answer is 1.9098.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Apr 5, 2017

By using the property of definite integrals

a c f ( x ) d x = a b f ( x ) d x + b c f ( x ) d x \displaystyle \int_a^c f(x) \,dx = \int_a^b f(x) \,dx + \int_b^c f(x) \,dx

for a < b < c a<b<c , we can write down our integral as

I = 1 3 x cos ( π 2 ( x x ) ) d x = 1 2 x cos ( π 2 ( x x ) ) d x + 2 3 x cos ( π 2 ( x x ) ) d x I = \displaystyle \int_1^3 \left\lfloor x \right\rfloor \cos { \left( \frac { \pi }{ 2 } \left( x-\left\lfloor x \right\rfloor \right) \right) dx } = \int_1^2 \left\lfloor x \right\rfloor \cos { \left( \frac { \pi }{ 2 } \left( x-\left\lfloor x \right\rfloor \right) \right) dx } + \int_2^3 \left\lfloor x \right\rfloor \cos { \left( \frac { \pi }{ 2 } \left( x-\left\lfloor x \right\rfloor \right) \right) dx }

Now

1 x < 2 x = 1 1 \le x < 2 \implies \left\lfloor x \right\rfloor = 1

2 x < 3 x = 2 2 \le x < 3 \implies \left\lfloor x \right\rfloor = 2

Thus

I = 1 2 cos ( π 2 ( x 1 ) ) d x + 2 3 cos ( π 2 ( x 2 ) ) d x I = \displaystyle \int_1^2 \cos { \left( \frac { \pi }{ 2 } \left( x-1 \right) \right) dx } + \int_2^3 \cos { \left( \frac { \pi }{ 2 } \left( x-2 \right) \right) dx }

Appropriate substitutions of

π 2 ( x 1 ) = u π 2 d x = d u π 2 ( x 2 ) = v π 2 d x = d v \dfrac{\pi}{2} (x-1) = u \implies \dfrac{\pi}{2} \,dx = du \\ \dfrac{\pi}{2} (x-2) = v \implies \dfrac{\pi}{2} \,dx = dv

yields

I = 2 π 0 π / 2 cos u d u + 4 π 0 π / 2 cos v d v = 2 π sin u 0 π / 2 + 4 π sin v 0 π / 2 = 6 π 1.90986 \begin{aligned} I &= \displaystyle \dfrac{2}{\pi} \int_0^{{\pi}/{2}} \cos u \,du + \dfrac{4}{\pi} \int_0^{{\pi}/{2}} \cos v \,dv \\ &= \dfrac{2}{\pi} \sin u {\huge |}_0^{{\pi}/{2}} + \dfrac{4}{\pi} \sin v {\huge |}_0^{{\pi}/{2}} \\ &= \dfrac{6}{\pi} \\ & \approx \boxed{1.90986} \end{aligned}

This one is quite simple if we do it with calm mind, and attack each limit one by one slowly. Isnt it @Tapas Mazumdar ?

Did you solved JEE MAINS 2017 paper? I solved i could do 20-25 maths and 15-18 physics...

But chemistry , i am quite weak, so i didnt touched.

Md Zuhair - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...