#2015_10 My class test problem!

Variations of density of solid sphere of radius R R with ( r ) 5 ({ r })^{ 5 } is shown in the diagram, where r is the distance from center of the sphere. What is the moment of Inertia of sphere about its symmetric axis?

More questions??

4 15 π ρ 0 R 5 \frac { 4 }{ 15 } \pi { \rho }_{ 0 }{ R }^{ 5 } 4 3 π ρ 0 R 5 \frac { 4 }{ 3 } \pi { \rho }_{ 0 }{ R }^{ 5 } 1 2 π ρ 0 R 5 \frac { 1 }{ 2 } \pi { \rho }_{ 0 }{ R }^{ 5 } 2 5 π ρ 0 R 5 \frac { 2 }{ 5 } \pi { \rho }_{ 0 }{ R }^{ 5 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
May 30, 2015

d m = ρ d V dm={ \rho }dV

d m = ρ 4 π r 2 d r dm={ \rho }4\pi { r }^{ 2 }dr

I = 2 3 ( ρ 4 π r 2 d r ) r 2 = 2 3 ρ 4 π r 4 d r I=\frac { 2 }{ 3 } \int { (\rho 4\pi } { r }^{ 2 }dr){ r }^{ 2 }=\frac { 2 }{ 3 } \int { \rho 4\pi } { r }^{ 4 }dr

I = 2 3 4 π ρ r 4 d r I=\frac { 2 }{ 3 } 4\pi \int { \rho } { r }^{ 4 }dr

Let r 5 = z { r }^{ 5 }=z

5 r 4 d r = d z 5{ r }^{ 4 }dr=dz

r 4 d r = d z 5 = 2 3 4 π 5 ρ d z { r }^{ 4 }dr=\frac { dz }{ 5 } =\frac { 2 }{ 3 } \frac { 4\pi }{ 5 } \int { \rho dz }

Area under the curve = 2 3 4 π 5 × 1 2 ρ 0 R 5 \frac { 2 }{ 3 } \frac { 4\pi }{ 5 } \times \frac { 1 }{ 2 } { \rho }_{ 0 }{ R }^{ 5 }

I = 2 3 × 2 5 π ρ 0 R 5 = 4 15 π ρ 0 R 5 I=\frac { 2 }{ 3 } \times \frac { 2 }{ 5 } \pi { \rho }_{ 0 }{ R }^{ 5 }=\boxed{\frac { 4 }{ 15 } \pi { \rho }_{ 0 }{ R }^{ 5 }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...