#2015_11 My class test problem -2

Geometry Level 4

12 sin ( x ) + 5 cos ( x ) = 2 y 2 8 y + 21 \large 12\sin(x)+5\cos(x)=2y^{ 2 }-8y+21

If x x and y y are the solutions of the equation above, then what is the value of 12 cot ( x y 2 ) 12\cot\left( \frac { xy }{ 2 } \right) ?

More questions?? .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anand O R
Jun 2, 2015

12 s i n x + 5 c o s x 13 12sinx+5cosx \leq 13 and 2 y 2 8 y + 21 13 2y^{ 2 }-8y+21 \geq 13

\Rightarrow 12 s i n x + 5 c o s x = 2 y 2 8 y + 21 = 13 12sinx+5cosx=2y^{ 2 }-8y+21=13

After solving , x = c o t 1 ( 5 12 ) x=cot^{-1}\left( \frac { 5 }{ 12 } \right) and y = 2 y=2

Therefore , 12 c o t ( x y 2 ) = 5 12cot\left( \frac { xy }{2 } \right) = \boxed{5}

Moderator note:

Almost right. Is is true that x = cot 1 5 12 x = \cot^{-1} \frac 5{12} only?

@CR Ãnänd Nice solution!

Anandhu Raj - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...