6 4 sin θ + 6 4 cos θ − 8 sec θ − 8 csc θ + tan θ + cot θ .
1f θ = 2 1 sin − 1 ( 4 1 ) , find the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From what is given:
θ 2 θ sin 2 θ 2 sin θ cos θ sin θ cos θ = 2 1 sin − 1 4 1 = sin − 1 4 1 = 4 1 = 4 1 = 8 1
Then we have:
x = 6 4 sin θ + 6 4 cos θ − 8 sec θ − 8 csc θ + tan θ + cot θ = 6 4 sin θ + 6 4 cos θ − cos θ 8 − sin θ 8 + cos θ sin θ + sin θ cos θ = sin θ cos θ 6 4 sin 2 θ cos θ + 6 4 sin θ cos 2 θ − 8 sin θ − 8 cos θ + sin 2 θ + cos 2 θ = 8 1 8 sin θ + 8 cos θ − 8 sin θ − 8 cos θ + 1 = 8 Note that sin θ cos θ = 8 1
Problem Loading...
Note Loading...
Set Loading...
From the given condition, we can say 2 s i n θ c o s θ = 4 1 .
Simplifying the given equation, 6 4 ( s i n θ + c o s θ ) − 8 8 1 ( s i n θ + c o s θ ) + 8 1 s i n 2 θ + c o s 2 θ 6 4 ( s i n θ + c o s θ ) − 6 4 ( s i n θ + c o s θ ) + 8