#2015_28 How well you know calculus?

Calculus Level 4

lim n [ n ! ( m n ) n ] 1 n \lim _{ n\rightarrow \infty }{ { \left[ \frac { n! }{ { (mn) }^{ n } } \right] }^{ \frac { 1 }{ n } } }

The expression equals,

More questions

e m em e m { e }^{ m } 1 m e \frac { 1 }{ me } e m \frac { e }{ m }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anandhu Raj
Oct 10, 2015

lim n [ n ! m n n ] 1 n = 1 m lim n [ n ! n n ] 1 n \lim _{ n\rightarrow \infty }{ { \left[ \frac { n! }{ { mn }^{ n } } \right] }^{ \frac { 1 }{ n } } } =\frac { 1 }{ m } \lim _{ n\rightarrow \infty }{ { \left[ \frac { n! }{ { n }^{ n } } \right] }^{ \frac { 1 }{ n } } }

= 1 m lim n [ 1 × 2 × 3 × 4 × 5 × . . . . . . . × n n × n × n × n × n × . . . . . . × n ] 1 n =\frac { 1 }{ m } \lim _{ n\rightarrow \infty }{ { \left[ \frac { 1\times 2\times 3\times 4\times 5\times .......\times n }{ n\times n\times n\times n\times n\times ......\times n } \right] }^{ \frac { 1 }{ n } } }

= 1 m lim n [ 1 n × 2 n × 3 n × 4 n × . . . . . × n n ] 1 n = A ( s a y ) =\frac { 1 }{ m } \lim _{ n\rightarrow \infty }{ { \left[ \frac { 1 }{ n } \times \frac { 2 }{ n } \times \frac { 3 }{ n } \times \frac { 4 }{ n } \times .....\times \frac { n }{ n } \right] }^{ \frac { 1 }{ n } } } =\quad A\quad (say)

Taking log ,

log A = log 1 m + lim n 1 n [ log 1 n + log 2 n + log 3 n + log 4 n . . . . + log n n ] \log { A } =\quad \log { \frac { 1 }{ m } } +\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \left[ \log { \frac { 1 }{ n } } +\log { \frac { 2 }{ n } } +\log { \frac { 3 }{ n } } +\log { \frac { 4 }{ n } } ....+\log { \frac { n }{ n } } \right] }

log A + log m = lim n 1 n r = 1 n log r n \Rightarrow \log { A } +\log { m } =\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \sum _{ r=1 }^{ n }{ \log { \frac { r }{ n } } } }

log A + log m = 0 1 log x d x \Rightarrow \log { A } +\log { m } =\int _{ 0 }^{ 1 }{ \log { x } dx }

log A + log m = 1 \Rightarrow \log { A } +\log { m } =-1

log A + log m = log e A = 1 m e \Rightarrow \log { A } +\log { m } =-\log { e } \\ \Rightarrow A=\frac { 1 }{ me }

Therefore, lim n [ n ! m n n ] 1 n = 1 m e \boxed{\lim _{ n\rightarrow \infty }{ { \left[ \frac { n! }{ { mn }^{ n } } \right] }^{ \frac { 1 }{ n } } } =\frac { 1 }{ me } }

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...