#2015_3 Not that easy, huh?

Algebra Level 4

If x 1 = 2 , x 2 = 2 + 2 , { x }_{ 1 }=\sqrt { 2 } \quad ,{ x }_{ 2 }=\sqrt { 2+\sqrt { 2 } }, and likewise x n = 2 + 2 + 2 + . . . . . . . n t e r m s { x }_{ n }=\sqrt { 2+\sqrt { 2+\sqrt { 2+.......n\ terms } } } , then find 2 sin ( 1 + 1 2 + 1 4 + 1 8 + . . . . . . . . + 1 2 2006 ) 45 ° 2\sin\left( 1+\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +........+\frac { 1 }{ { 2 }^{ 2006 } } \right) 45° .

More problems?!!

x 2006 { x }_{ 2006 } x 2007 { x }_{ 2007} x 2008 { x }_{ 2008 } x 2010 { x }_{ 2010 } x 2009 { x }_{ 2009 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anandhu Raj
Jan 17, 2015

2 s i n ( 1 + 1 2 + 1 4 + 1 8 + . . . . . . . . + 1 2 2006 ) 45 ° 2sin\left( 1+\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\frac { 1 }{ 8 } +........+\frac { 1 }{ { 2 }^{ 2006 } } \right) 45° = 2 s i n ( 2 1 2 2006 ) 45 ° 2sin\left( 2-\frac { 1 }{ { 2 }^{ 2006 } } \right) 45°

= 2 s i n ( 90 45 2 2006 ) 2sin\left( 90-\frac { 45 }{ { 2 }^{ 2006 } } \right)

= 2 s i n ( π 2 π 4 × 2 2006 ) 2sin\left( \frac{\pi}{2} -\frac { \pi }{ { 4\times 2 }^{ 2006 } } \right)

= 2 c o s ( π 2 2008 ) ( 1 ) 2cos\left( \frac { \pi }{ { 2 }^{ 2008 } } \right) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ------(1)

Now we move to the x n { x }_{ n } part,

1 + c o s π 4 = 2 c o s 2 π 8 1+cos\frac { \pi }{ 4 } \quad =\quad 2{ cos }^{ 2 }\frac { \pi }{ 8 }

\Rightarrow 2 + 2 = 4 c o s 2 π 8 2+\sqrt { 2 } =\quad 4{ cos }^{ 2 }\frac { \pi }{ 8 }

\Rightarrow x 2 = 2 + 2 = 2 c o s π 2 3 { x }_{ 2 }=\sqrt { 2+\sqrt { 2 } } =\quad 2{ cos }\frac { \pi }{ { 2 }^{ 3 } }

So we could form a general formula,

x n = 2 c o s π 2 n + 1 ( 2 ) { x }_{ n }=2{ cos }\frac { \pi }{ { 2 }^{ n+1 } } \quad \quad \quad \quad \quad \quad ------------(2)

comparing (1) & (2) ,

2 2008 = 2 n + 1 \Rightarrow { 2 }^{ 2008 }={ 2 }^{ n+1 }

n = 2007 \Rightarrow n=2007

So the answer is x 2007 \boxed{{ x }_{ 2007 }} .

Hey! @Anandhu Nice solution, I have edited LaTeX in your question. Please check it for accuracy.

Pranjal Jain - 6 years, 4 months ago

Log in to reply

Yeah, thanks :)

Anandhu Raj - 6 years, 4 months ago

There's a typo!

2 s i n ( 90 45 2 2006 ) = 2 s i n ( π 2 π 4 × 2 2006 ) 2sin\left( 90-\dfrac { 45 }{ { 2 }^{ 2006 } } \right)\\ =2sin\left( \dfrac{\pi}{\color{#D61F06}{2}} -\dfrac { \pi }{ { 4\times 2 }^{ 2006 } } \right)

Pranjal Jain - 6 years, 4 months ago

Log in to reply

@Pranjal Jain I have corrected it..thanks again:)

Anandhu Raj - 6 years, 4 months ago

Nice problem. I solved it using induction with a spreadsheet as below:

From the spreadsheet it is clear that:

2 sin ( π 4 i = 0 n 1 2 i ) = x n + 1 2\sin {\left( \frac {\pi}{4} \sum _{i=0} ^{n} {\frac{1}{2^i}} \right) } = x_{n+1}

Therefore, when n = 2006 n = 2006 , then L H S = x 2007 LHS = x_{2007} .

What is L H S \boxed { LHS } ?

. . - 3 months, 3 weeks ago

Log in to reply

The left hand side.

Chew-Seong Cheong - 3 months, 3 weeks ago
Hao Fu
Mar 16, 2018

In fact,we can easily find a equation as below:

2sin(1+…+1/2º)45°=2sin45°=√2=x(1)=x (0+1)

and considered that this is a CHOOSE question in the meantime,so we have a sound reason to guess that the answer is x(2006+1)=x(2007)

This is a Chinese guy's first answer,so it is an absolutely understandable thing if he has some wrong expressions. XD

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...