m = 1 ∑ 4 n + 1 { k = 1 ∑ m − 1 { sin ( m 2 k π ) − i cos ( m 2 k π ) } } m
where i = − 1 .
What can we describe for the expression above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How is ∑ m = 1 4 n + 1 i m = i
Log in to reply
m = 1 ∑ 4 n + 1 i m = m = 1 ∑ 4 n i m + i
and ∑ m = 1 4 n i m is always equal to zero. You can check it yourselves!
Problem Loading...
Note Loading...
Set Loading...
Given ∑ m = 1 4 n + 1 { ∑ k = 1 m − 1 { s i n ( m 2 k π ) − i c o s ( m 2 k π ) } } m
Evaluating ∑ k = 1 m − 1 { s i n ( m 2 k π ) − i c o s ( m 2 k π ) }
= ∑ k = 1 m − 1 ( − i ) { c o s ( m 2 k π ) + i s i n ( m 2 k π ) }
= ( − i ) ∑ k = 1 m − 1 e m 2 π k
= ( − i ) ∑ k = 1 m − 1 α k , w h e r e α = e m 2 π
= ( − i ) ( α − 1 ) α ( α m − 1 − 1 )
⇒ ∑ k = 1 m − 1 { s i n ( m 2 k π ) − i c o s ( m 2 k π ) } = i
Now ∑ m = 1 4 n + 1 { ∑ k = 1 m − 1 { s i n ( m 2 k π ) − i c o s ( m 2 k π ) } } m = ∑ m = 1 4 n + 1 i m
⇒ ∑ m = 1 4 n + 1 { ∑ k = 1 m − 1 { s i n ( m 2 k π ) − i c o s ( m 2 k π ) } } m = i = p u r e l y i m a g i n a r y