2015_7 Complex Indeed! -part 2

Geometry Level 4

m = 1 4 n + 1 { k = 1 m 1 { sin ( 2 k π m ) i cos ( 2 k π m ) } } m \sum _{ m=1 }^{ 4n+1 }{ { \left\{ \sum _{ k=1 }^{ m-1 }{ \left\{ \sin\left( \frac { 2k\pi }{ m } \right) -i\cos\left( \frac { 2k\pi }{ m } \right) \right\} } \right\} }^{ m } }

where i = 1 i=\sqrt { -1 } .

What can we describe for the expression above?

More question?!

purely real purely imaginary has imaginary part equal to 2 has real part equal to 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Feb 28, 2015

Given m = 1 4 n + 1 { k = 1 m 1 { s i n ( 2 k π m ) i c o s ( 2 k π m ) } } m \sum _{ m=1 }^{ 4n+1 }{ { \left\{ \sum _{ k=1 }^{ m-1 }{ \left\{ sin\left( \frac { 2k\pi }{ m } \right) -icos\left( \frac { 2k\pi }{ m } \right) \right\} } \right\} }^{ m } }

Evaluating k = 1 m 1 { s i n ( 2 k π m ) i c o s ( 2 k π m ) } \sum _{ k=1 }^{ m-1 }{ \left\{ sin\left( \frac { 2k\pi }{ m } \right) -icos\left( \frac { 2k\pi }{ m } \right) \right\} }

= k = 1 m 1 ( i ) { c o s ( 2 k π m ) + i s i n ( 2 k π m ) } =\sum _{ k=1 }^{ m-1 }{ (-i)\left\{ cos\left( \frac { 2k\pi }{ m } \right) +isin\left( \frac { 2k\pi }{ m } \right) \right\} }

= ( i ) k = 1 m 1 e 2 π k m =(-i)\sum _{ k=1 }^{ m-1 }{ { e }^{ \frac { 2\pi k }{ m } } }

= ( i ) k = 1 m 1 α k , w h e r e α = e 2 π m =(-i)\sum _{ k=1 }^{ m-1 }{ { \alpha }^{ k } } \quad \quad \quad \quad \quad ,where\quad \alpha ={ e }^{ \frac { 2\pi }{ m } }

= ( i ) α ( α m 1 1 ) ( α 1 ) =(-i)\frac { \alpha ({ \alpha }^{ m-1 }-1) }{ (\alpha -1) }

k = 1 m 1 { s i n ( 2 k π m ) i c o s ( 2 k π m ) } = i \Rightarrow \sum _{ k=1 }^{ m-1 }{ \left\{ sin\left( \frac { 2k\pi }{ m } \right) -icos\left( \frac { 2k\pi }{ m } \right) \right\} } =i

Now m = 1 4 n + 1 { k = 1 m 1 { s i n ( 2 k π m ) i c o s ( 2 k π m ) } } m = m = 1 4 n + 1 i m \sum _{ m=1 }^{ 4n+1 }{ { \left\{ \sum _{ k=1 }^{ m-1 }{ \left\{ sin\left( \frac { 2k\pi }{ m } \right) -icos\left( \frac { 2k\pi }{ m } \right) \right\} } \right\} }^{ m } } =\sum _{ m=1 }^{ 4n+1 }{ { i }^{ m } }

m = 1 4 n + 1 { k = 1 m 1 { s i n ( 2 k π m ) i c o s ( 2 k π m ) } } m = i = p u r e l y i m a g i n a r y \Rightarrow \sum _{ m=1 }^{ 4n+1 }{ { \left\{ \sum _{ k=1 }^{ m-1 }{ \left\{ sin\left( \frac { 2k\pi }{ m } \right) -icos\left( \frac { 2k\pi }{ m } \right) \right\} } \right\} }^{ m } } =i=\boxed { purely\quad imaginary }

How is m = 1 4 n + 1 i m \sum _{ m=1 }^{ 4n+1 }{ { i }^{ m } } = i

Parth Deshpande - 5 years, 6 months ago

Log in to reply

m = 1 4 n + 1 i m = m = 1 4 n i m + i \sum _{ m=1 }^{ 4n+1 }{ { i }^{ m } } =\sum _{ m=1 }^{ 4n }{ { i }^{ m } } +i

and m = 1 4 n i m \sum _{ m=1 }^{ 4n }{ { i }^{ m } } is always equal to zero. You can check it yourselves!

Anandhu Raj - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...