( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) = 4 ( 1 + x y )
What is number of integral solutions for the equation above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
{ x + 1 = 2 y − 1 = 1 } { x + 1 = − 2 y − 1 = − 1 } [ x + 1 = 1 y − 1 = 2 ] [ x + 1 = − 1 y − 1 = − 2 ]
Don't use \left { and \right in the code for matrixs. Use {bmatrix} for square brackets and {Bmatrix} for curly brackets.
I can't edit your Latex since I'm not a mod. So to fix your code, delete all "\left {" and "\right". You can put the brackets you want by adding a "b" or "B" to {matrix} (both begin and end).
Problem Loading...
Note Loading...
Set Loading...
Write the equation ( x 2 + 1 ) ( y 2 + 1 ) + 2 ( x − y ) ( 1 − x y ) = 4 ( 1 + x y ) in the form,
x 2 y 2 + y 2 + x 2 + 1 + 2 ( x − y ) ( 1 − x y ) = 4 + 4 x y
⇒ x 2 y 2 − 2 x y + 1 + y 2 + x 2 − 2 x y + 2 ( x − y ) ( 1 − x y ) = 4
⇒ ( x y − 1 ) 2 + ( x − y ) 2 − 2 ( x − y ) ( x y − 1 ) = 4
⇒ [ x y − 1 − ( x − y ) ] 2 = 4
⇒ x y − 1 − ( x − y ) = ± 2 \
⇒ ( x + 1 ) ( y − 1 ) = ± 2
CASE I: ( x + 1 ) ( y − 1 ) = 2 , we obtain system of equations,
{ x + 1 = 2 y − 1 = 1 } { x + 1 = − 2 y − 1 = − 1 } { x + 1 = 1 y − 1 = 2 } { x + 1 = − 1 y − 1 = − 2 }
yielding solutions (1,2),(-3,0),(0,3),(-2,-1)
CASE II: ( x + 1 ) ( y − 1 ) = − 2 , we obtain system of equations,
{ x + 1 = 2 y − 1 = − 1 } { x + 1 = − 2 y − 1 = 1 } { x + 1 = 1 y − 1 = − 2 } { x + 1 = − 1 y − 1 = 2 }
yielding solutions (1,0),(-3,2),(0,-1),(-2,3)
Thus there are 8 integral solutions.