#2015_9 This is time for JEE Advanced..

Sum to ( n + 1 ) (n+1) terms of the series,

C 0 2 C 1 3 + C 2 4 C 3 5 + . . . \frac { { C }_{ 0 } }{ 2 } -\frac { { C }_{ 1 } }{ 3 } +\frac { { C }_{ 2 } }{ 4 } -\frac { { C }_{ 3 } }{ 5 } +... is,

Note: C r = ( n r ) { C }_{ r }=\left( \begin{matrix} n \\ r \end{matrix} \right)

More questions??

1 n + 2 \frac { 1 }{ n+2 } 1 n + 1 \frac { 1 }{ n+1 } N o n e None o f of t h e s e these 1 n ( n + 1 ) \frac { 1 }{ n(n+1) }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
May 12, 2015

We have ( 1 x ) n = C 0 C 1 x + C 2 x 2 C 3 x 3 + . . . . . { (1-x) }^{ n }={ C }_{ 0 }-{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }-{ C }_{ 3 }{ x }^{ 3 }+.....

x ( 1 x ) n = C 0 x C 1 x 2 + C 2 x 3 C 3 x 4 + . . . . . \Rightarrow x{ (1-x) }^{ n }={ C }_{ 0 }x-{ C }_{ 1 }{ x }^{ 2 }+{ C }_{ 2 }{ x }^{ 3 }-{ C }_{ 3 }{ x }^{ 4 }+.....

0 1 x ( 1 x ) n d x = 0 1 ( C 0 x C 1 x 2 + C 2 x 3 C 3 x 4 + . . . . . ) d x ( 1 ) \Rightarrow \int _{ 0 }^{ 1 }{ x{ (1-x) }^{ n } } dx=\int _{ 0 }^{ 1 }{ ( } { C }_{ 0 }x-{ C }_{ 1 }{ x }^{ 2 }+{ C }_{ 2 }{ x }^{ 3 }-{ C }_{ 3 }{ x }^{ 4 }+.....)dx\quad \quad \quad ----(1)

LHS of ( 1 ) (1) = 0 1 x ( 1 x ) n d x = 1 ( n + 1 ) ( n + 2 ) [ 0 a f ( x ) d x = 0 a f ( a x ) d x = ( x n + 1 n + 1 x n + 2 n + 2 ) ] 0 1 \int _{ 0 }^{ 1 }{ x{ (1-x) }^{ n } } dx=\frac { 1 }{ (n+1)(n+2) } { \quad \quad \quad \left[ \because \int _{ 0 }^{ a }{ f\left( x \right) dx=\int _{ 0 }^{ a }{ f\left( a-x \right) } dx= } \left( \frac { { x }^{ n+1 } }{ n+1 } -\frac { { x }^{ n+2 } }{ n+2 } \right) \right] }_{ 0 }^{ 1 }

RHS of ( 1 ) (1) = [ C 0 x 2 2 C 1 x 3 3 + C 2 x 4 4 . . . . ] 0 1 = C 0 2 C 1 3 + C 2 4 . . . . . { \left[ \frac { { C }_{ 0 }{ x }^{ 2 } }{ 2 } -\frac { { C }_{ 1 }{ x }^{ 3 } }{ 3 } +\frac { { C }_{ 2 }{ x }^{ 4 } }{ 4 } -.... \right] }_{ 0 }^{ 1 }=\frac { { C }_{ 0 } }{ 2 } -\frac { { C }_{ 1 } }{ 3 } +\frac { { C }_{ 2 } }{ 4 } -.....

Thus C 0 2 C 1 3 + C 2 4 C 3 5 + . . . \frac { { C }_{ 0 } }{ 2 } -\frac { { C }_{ 1 } }{ 3 } +\frac { { C }_{ 2 } }{ 4 } -\frac { { C }_{ 3 } }{ 5 } +... = 1 ( n + 1 ) ( n + 2 ) =\boxed{ \frac { 1 }{ (n+1)(n+2) }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...