2016

Algebra Level 2

201 6 n + 201 6 2 + 201 6 2 + + 201 6 2 p times = 201 6 3 2016^n+\underbrace{2016^2+2016^2+\ldots+2016^2}_{p \text{ times}}=2016^3

where p p and n n are both positive integers.

What is the value of n n ?

2 0 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jul 8, 2016

201 6 n + 201 6 2 + 201 6 2 + + 201 6 2 p times = 201 6 3 201 6 n + p ( 201 6 2 ) = 201 6 3 p ( 201 6 2 ) = 201 6 3 201 6 n p = 201 6 3 201 6 n 201 6 2 p = 2016 201 6 n 2 2016^n+\underbrace{2016^2+2016^2+\ldots+2016^2}_{p\text{ times}}=2016^3\\ 2016^n+p(2016^2)=2016^3\\ p(2016^2)=2016^3-2016^n\\ p=\dfrac{2016^3-2016^n}{2016^2}\\ p=2016-2016^{n-2}

Now, given that p p is positive, we know that

2016 201 6 n 2 > 0 201 6 1 > 201 6 n 2 1 > n 2 n < 3 2016-2016^{n-2}>0\\ 2016^1>2016^{n-2}\\ 1>n-2\\ n<3

Given that p p is an integer, we know that 201 6 n 2 2016^{n-2} must be an integer. This implies that:

n 2 0 n 2 n-2 \geq 0\\ n \geq 2

Combine the two conditions, we have

2 n < 3 2 \leq n < 3

For this range of values of n n , there is only one integer value that n n can take, and that is n = 2 n=\boxed{2}

Great solution !! :) .

Novril Razenda - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...