2016 is coming!

Algebra Level 4

x + 672 + y + 672 + z + 672 \sqrt{x + 672} + \sqrt{y + 672} + \sqrt{z + 672}

Let x , y x,y and z z be positive reals whose sum is 2016. If the maximum value of the expression above is M M , what is M 2 ? M^2 ?


The answer is 12096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dev Sharma
Dec 28, 2015

We will use Cauchy Schwarz Inequality,

( 1 + 1 + 1 ) ( ( x + 672 ) + ( y + 672 ) + ( z + 672 ) ) ( x + 672 + y + 672 + z + 672 ) 2 (1 + 1 + 1)((x + 672) + (y + 672) + (z + 672)) ≥ (\sqrt{x + 672} + \sqrt{y + 672} + \sqrt{z + 672})^2

3 ( x + y + z + 2016 ) ( x + 672 + y + 672 + z + 672 ) 2 3(x + y + z + 2016) ≥ (\sqrt{x + 672} + \sqrt{y + 672} + \sqrt{z + 672})^2

12096 ( x + 672 + y + 672 + z + 672 ) 2 12096 ≥ (\sqrt{x + 672} + \sqrt{y + 672} + \sqrt{z + 672})^2

12096 ( x + 672 + y + 672 + z + 672 ) \sqrt{12096} ≥ (\sqrt{x + 672} + \sqrt{y + 672} + \sqrt{z + 672})

So maximum value is M = 12096 M = \sqrt{12096} , thus M 2 = 12096 M^2 = 12096 .

In your question you are asking for the minimum value. Please edit it.

Kushagra Sahni - 5 years, 5 months ago

Log in to reply

Done. Thanks.

Dev Sharma - 5 years, 5 months ago
Rishik Jain
Jan 5, 2016

We know that A . M R . M . S A.M \le R.M.S

x + 672 + y + 672 + z + 672 3 x + 672 + y + 672 + z + 672 3 \dfrac{\sqrt{x+672}+ \sqrt{y+672}+ \sqrt{z+672}}{3} \le \sqrt{\dfrac{x+672+y+672+z+672}{3}}

x + 672 + y + 672 + z + 672 3 4032 3 \sqrt{x+672}+ \sqrt{y+672}+ \sqrt{z+672} \le 3 \sqrt{\dfrac{4032}{3}}

x + 672 + y + 672 + z + 672 3 1344 \sqrt{x+672}+ \sqrt{y+672}+ \sqrt{z+672} \le 3 \sqrt{1344}

Therefore, the maximum value M = 3 1344 M= 3 \sqrt{1344}

M 2 = 9 × 1344 = 12096 M^2 = 9\times 1344 = \large \boxed{12096}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...