x + 6 7 2 + y + 6 7 2 + z + 6 7 2
Let x , y and z be positive reals whose sum is 2016. If the maximum value of the expression above is M , what is M 2 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In your question you are asking for the minimum value. Please edit it.
We know that A . M ≤ R . M . S
3 x + 6 7 2 + y + 6 7 2 + z + 6 7 2 ≤ 3 x + 6 7 2 + y + 6 7 2 + z + 6 7 2
x + 6 7 2 + y + 6 7 2 + z + 6 7 2 ≤ 3 3 4 0 3 2
x + 6 7 2 + y + 6 7 2 + z + 6 7 2 ≤ 3 1 3 4 4
Therefore, the maximum value M = 3 1 3 4 4
M 2 = 9 × 1 3 4 4 = 1 2 0 9 6
Problem Loading...
Note Loading...
Set Loading...
We will use Cauchy Schwarz Inequality,
( 1 + 1 + 1 ) ( ( x + 6 7 2 ) + ( y + 6 7 2 ) + ( z + 6 7 2 ) ) ≥ ( x + 6 7 2 + y + 6 7 2 + z + 6 7 2 ) 2
3 ( x + y + z + 2 0 1 6 ) ≥ ( x + 6 7 2 + y + 6 7 2 + z + 6 7 2 ) 2
1 2 0 9 6 ≥ ( x + 6 7 2 + y + 6 7 2 + z + 6 7 2 ) 2
1 2 0 9 6 ≥ ( x + 6 7 2 + y + 6 7 2 + z + 6 7 2 )
So maximum value is M = 1 2 0 9 6 , thus M 2 = 1 2 0 9 6 .