2016 problem!

Algebra Level 5

f ( 1 2016 ) + f ( 2 2016 ) + f ( 3 2016 ) + + f ( 2016 2016 ) f \left( \frac 1{2016} \right) + f \left( \frac 2{2016} \right) + f \left( \frac 3{2016} \right) +\cdots + f \left( \frac {2016}{2016} \right)

Let f ( x ) = 8 1 6 x + 4 f(x) = \dfrac 8{16^x+4} for real numbers x x . Evaluate the expression above.

Submit your answer to three decimal places.


The answer is 2015.400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Function Problem Solving

Consider the following:

f ( x ) + f ( 1 x ) = 8 1 6 x + 4 + 8 1 6 1 x + 4 = 8 1 6 x + 4 + 8 ( 1 6 x ) 16 + 4 ( 1 6 x ) = 8 1 6 x + 4 + 2 ( 1 6 x ) 4 + 1 6 x = 8 + 2 ( 1 6 x ) 1 6 x + 4 = 2 \begin{aligned} f(x) + f(1-x) & = \frac 8{16^x+4} + \frac 8{16^{1-x}+4} \\ & = \frac 8{16^x+4} + \frac {8(16^x)}{16+4(16^x)} \\ & = \frac 8{16^x+4} + \frac {2(16^x)}{4+16^x} \\ & = \frac {8+2(16^x)}{16^x+4} \\ & = 2 \end{aligned}

Now, let x = n 2016 x = \dfrac n{2016} , where n n is a positive integer, then 1 x = 2016 n 2016 1-x = \dfrac {2016-n}{2016} . Therefore, the expression:

n = 1 2016 f ( n 2016 ) = n = 1 1007 [ f ( n 2016 ) + f ( 1 n 2016 ) ] + f ( 1008 2016 ) + f ( 2016 2016 ) = 2 ( 1007 ) + 8 1 6 1 2 + 4 + 8 1 6 1 + 4 = 2014 + 1 + 0.4 = 2015.400 \begin{aligned} \sum_{n=1}^{2016} f\left(\frac n{2016}\right) & = \sum_{n=1}^{1007} \left[ f\left(\frac n{2016}\right) + f\left(1 - \frac n{2016}\right) \right] + f\left(\frac {1008}{2016}\right) + f\left(\frac {2016}{2016}\right) \\ & = 2(1007) + \frac 8{16^\frac 12 +4} + \frac 8{16^1+4} \\ & = 2014 + 1 + 0.4 = \boxed{2015.400} \end{aligned}

Oh that's beautiful!

I started by approximating the answer by integrating the function from 0 to 1, and got exactly 2016. That is kind of neat, but not what was wanted!

Peter Macgregor - 4 years, 11 months ago

Did the same...

Aditya Kumar - 4 years, 11 months ago

Great Solution :)+1!!

Novril Razenda - 4 years, 11 months ago

Same way :)+1!!!

Racchit Jain - 4 years, 11 months ago

My answer came out to be 2016.

Sharayu K - 4 years, 11 months ago

f ( x 2016 ) + f ( 2016 x 2016 ) = 8 { 1 1 6 x 2016 + 4 + 1 1 6 2016 x 2016 + 4 } = 2. f \left ( \dfrac x {2016}\right )+f \left (\dfrac{2016-x}{2016}\right )=8 \left \{ \dfrac 1 {16^{\frac x {2016}}+4}+\dfrac 1 {16^{\frac {2016 - x} {2016}}+4} \right \}=2.\\ x = 1 1007 { f ( x 2016 ) + f ( 2016 x 2016 ) } + f ( 1008 2016 ) + f ( 2016 2016 ) \displaystyle \sum_{x=1}^{1007} \left \{ f \left ( \dfrac x {2016}\right )+f \left (\dfrac{2016-x}{2016}\right ) \right \}+ f \left ( \dfrac {1008} {2016} \right )+ f \left ( \dfrac {2016 }{2016}\right )\\ = 2014 + 1 + 2 5 = 2015.400. =2014+1+\frac 2 5=\huge \ \ \ \color{#D61F06}{2015.400}.\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...