Find the minimum value of y , if for any real number x .
y = ( 1 5 − x ) ( 1 7 − x ) ( 1 5 + x ) ( 1 7 + x )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
y d x d y d x d y = ( 1 5 − x ) ( 1 7 − x ) ( 1 5 + x ) ( 1 7 + x ) = x 4 − 5 1 4 x 2 + 6 5 0 2 5 = 4 x 3 − 1 0 2 8 x = 4 x 3 − 1 0 2 8 x = 0
solving the equation we get, x = 0 or, x = 2 5 7 or, x = − 2 5 7
If, x = 0 , y = 6 5 0 2 5
If, x = 2 5 7 , y = − 1 0 2 4
If, x = − 2 5 7 , y = − 1 0 2 4
Hence, the minimum value of y is − 1 0 2 4
Problem Loading...
Note Loading...
Set Loading...
y = ( 1 5 − x ) ( 1 7 − x ) ( 1 5 + x ) ( 1 7 + x ) = ( 2 2 5 − x 2 ) ( 2 8 9 − x 2 ) = x 4 − 5 1 4 x 2 + 6 5 0 2 5 = x 4 − 2 ( 2 5 7 ) x 2 + 2 5 7 2 − 2 5 7 2 + 6 5 0 2 5 = ( x 2 − 2 5 7 ) 2 − 6 6 0 4 9 + 6 5 0 2 5 = ( x 2 − 2 5 7 ) 2 − 1 0 2 4
We note that ( x 2 − 2 5 7 ) 2 ≥ 0 , and min ( y ) = − 1 0 2 4 when ( x 2 − 2 5 7 ) 2 = 0 .