2017 is a prime

Exactly one of the following is a perfect square. Which one is it? A = 1999 × ( 1997 × 1995 × 1993 + 16 ) B = 1999 × 1997 × ( 1995 × 1993 + 16 ) C = 1999 × 1997 × 1995 × ( 1993 + 16 ) D = 1999 × 1997 × 1995 × 1993 + 16 \begin{aligned} A & = 1999\times (1997\times 1995\times 1993 +16) \\ B & = 1999\times 1997\times (1995\times 1993 +16) \\ C & = 1999\times 1997\times 1995\times (1993+16) \\ D & = 1999\times 1997\times 1995\times 1993 +16 \end{aligned}

Note : 2017 is a prime number.

A C D B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Sep 9, 2017

Since 1999 1999 is prime, for A A , B B or C C to be perfect squares, they need to have it with an even exponent in their prime factorization, but

1997 1995 1993 + 16 ( 2 ) ( 4 ) ( 6 ) + 16 32 m o d 1999 1997\cdot 1995\cdot 1993+16\equiv (-2)(-4)(-6)+16\equiv -32 \mod 1999

A \Longrightarrow A is not the answer

{ gcd ( 1997 , 1999 ) = 1 1995 1993 + 16 ( 4 ) ( 6 ) + 16 40 m o d 1999 \begin{cases} \gcd(1997,1999)=1\\ 1995\cdot 1993+16\equiv (-4)(-6)+16\equiv 40 \mod 1999 \end{cases}

B \Longrightarrow B is not the answer

{ gcd ( 1997 , 1999 ) = 1 gcd ( 1995 , 1999 ) = 1 1993 + 16 6 + 16 10 m o d 1999 \begin{cases} \gcd(1997,1999)=1\\ \gcd(1995,1999)=1\\ 1993+16\equiv -6+16\equiv 10 \mod 1999 \end{cases}

C \Longrightarrow C is not the answer

For D D I'll consider a general case

k ( k 2 ) ( k 4 ) ( k 6 ) + 16 = k ( k 6 ) ( k 2 ) ( k 4 ) + 16 = ( k 2 6 k ) ( k 2 6 k + 8 ) + 16 = ( k 2 6 k ) 2 + 8 ( k 2 6 k ) + 16 = ( k 2 6 k ) 2 + 2 4 ( k 2 6 k ) + 4 2 = ( k 2 6 k + 4 ) 2 \begin{aligned} k(k-2)(k-4)(k-6)+16&=\color{#D61F06}k(k-6)\color{#3D99F6}(k-2)(k-4)\color{#333333}+16\\ &=\color{#D61F06}(k^2-6k)\color{#3D99F6}(k^2-6k+8)\color{#333333}+16\\ &=(k^2-6k)^2+8(k^2-6k)+16\\ &=(k^2-6k)^2+2\cdot 4(k^2-6k)+4^2\\ &=(k^2-6k+4)^2 \end{aligned}

With k = 1999 k=1999 we get that

D = 1999 1997 1995 1993 + 16 = ( 199 9 2 6 1999 + 4 ) 2 = 398401 1 2 D=1999\cdot 1997\cdot 1995\cdot 1993+16=(1999^2-6\cdot 1999+4)^2=3984011^2

Is a perfect square. Hence D \boxed{D} is the answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...