2018 AMC 12A Problem #14

Algebra Level 3

The solution to the equation log 3 x 4 = log 2 x 8 , \log_{3x} 4 = \log_{2x} 8, where x x is a positive real number other than 1 3 \frac{1}{3} or 1 2 , \frac{1}{2}, can be written as p q \frac{p}{q} where p p and q q are relatively prime positive integers. What is p + q p + q ?


Next problem

Previous problem

All problems

31 13 35 17 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jerry McKenzie
Feb 9, 2018

l o g 3 x 4 = l o g 2 x 8 log_{3x}4=log_{2x}8

l o g 2 4 l o g 2 ( 3 x ) = l o g 2 8 l o g 2 ( 2 x ) \Rightarrow \frac{log_{2}4}{log_{2}(3x)}=\frac{log_{2}8}{log_{2}(2x)}

l o g 2 4 l o g 2 ( 2 x ) = l o g 2 8 l o g 2 ( 3 x ) \Rightarrow log_{2}4\cdot log_{2}(2x)=log_{2}8\cdot log_{2}(3x)

2 l o g 2 ( 2 x ) = 3 l o g 2 ( 3 x ) \Rightarrow 2log_{2}(2x)=3log_{2}(3x)

2 ( l o g 2 ( 2 ) + l o g 2 ( x ) ) = 3 ( l o g 2 ( 3 ) + l o g 2 ( x ) ) \Rightarrow 2(log_{2}(2)+log_{2}(x))=3(log_{2}(3)+log_{2}(x))

2 l o g 2 ( 2 ) + 2 l o g 2 ( x ) = 3 l o g 2 ( 3 ) + 3 l o g 2 ( x ) \Rightarrow 2log_{2}(2)+2log_{2}(x)=3log_{2}(3)+3log_{2}(x)

2 l o g 2 ( 2 ) 3 l o g 2 ( 3 ) = l o g 2 ( x ) \Rightarrow 2log_{2}(2)-3log_{2}(3)=log_{2}(x)

l o g 2 ( 2 2 ) l o g 2 ( 3 3 ) = l o g 2 ( x ) \Rightarrow log_{2}(2^2)-log_{2}(3^3)=log_{2}(x)

l o g 2 ( 2 2 3 3 ) = l o g 2 ( x ) \Rightarrow log_{2}(\frac{2^2}{3^3})=log_{2}(x)

2 l o g 2 ( 2 2 3 3 ) = 2 l o g 2 ( x ) \Rightarrow 2^{log_{2}(\frac{2^2}{3^3})}=2^{log_{2}(x)}

2 2 3 3 = x \Rightarrow \frac{2^2}{3^3}=x

4 27 = x \Rightarrow \frac{4}{27}=x

Thus the required answer is 27 + 4 = 31 27+4=31 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...